Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Полимеры - Рефераты по химии - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по химии

Реферат: Полимеры



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
Костромской Государственный Технологический Университет

Реферат

ПОЛИМЕРЫ
Выполнил: Тышкевич Е.Е., 97-А-18 "А"
Проверил: Плаксин Е.Б.

Кострома – 2000
Содержание
Общая характеристика и классификация ... 3

Свойства полимеров …. 5
Механические свойства …. 5
Теплофизические свойства 6
Химические свойства . 6
Электрические свойства … 7
Технологические свойства 8

Пластмассы ... 9
Полистирол . 10
Полиэтилен . 10
Фторопласт . 11
Полиимид … 12
Эпоксидные смолы .… 12

Слоистые пластики …... 14
Печатные платы на термопластах 16

Синтетические эмали, лаки и компаунды . 16
Лаки ..….….. 16
Эмали ... 19
Компаунды .. 17

Полимерные клеи и агдезивы ….. 19

Список литературы .…. 21
ОБЩАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ
Полимером называется органическое вещество, длинные молекулы которого построены из одинаковых многократно повторяющихся звеньев — мономеров.
Размер молекулы полимера определяется степенью полимеризации n, т.е. числом звеньев в цепи. Если n=10...20, вещества представляют собой легкие масла. С возрастанием п увеличивается вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 104, и тогда длина молекул достигает микрометров. Молекулярная масса полимера равна произведению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах 103 ... 3*105. Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморфной до частично кристаллической. Доля кристалличности в значительной мере определяется геометрией цепей. Чем ближе укладываются цепи, тем более кристалличным полимер становится. Конечно, кристалличность даже в лучшем случае оказывается несовершенной.
Аморфные полимеры плавятся в диапазоне температур, зависящем не только от их природы, но и от длины цепей; кристаллические имеют точку плавления.
По происхождению полимеры делятся на три группы.
Природные образуются в результате жизнедеятельности растений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.
Обычно природные полимеры подвергаются операциям выделения очистки, модификации, при которых структура основных цепей остается неизменной.
Продуктом такой переработки являются искусственные полимеры. Примерами являются натуральный каучук, изготовляемый из латекса, целлулоид, представляющий собой нитроцеллюлозу, пластифицированную камфорой для повышения эластичности.
Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются незаменимыми и до сих пор, например в целлюлозно-бумажной промышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров — материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Развитие химической технологии высокомолекулярных веществ—неотъемлемая и существенная часть современной НТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветвленные, сетчатые и пространственные. Молекулы линейных полимеров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рис. 1). Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин
«линейные» обозначает прямолинейные, наоборот, для них более характерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.
Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов.
Разветвленные (привитые) полимеры более прочны, чем линейные.
Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.
Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изменению как механических, так и химических свойств. Обычная резина мягка, но при вулканизации серой образуются ковалентные связи типа S-0, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и работоспособности.
Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством поперечных прочных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяющие свойства материала, который приобретает прочность и высокую вязкость, становится нерастворимым и неплавким. Вследствие большой реакционной способности молекул, проявляющейся при повышении температуры, такие полимеры называют термореактивными. Нетрудно представить, что их молекулы активны не только по отношению друг к другу, но и к поверхностям инородных тел. Поэтому термореактивные полимеры, в отличие от термопластичных, обладают высокой адгезионной способностью даже при низких температурах, что позволяет использовать их в качестве защитных покрытий, клеев и связующего в композиционных материалах.

Рис.1. Схематическая диаграмма
вязкости термопластичных полимеров в
зависимости от температуры: Т1 –
температура перехода из
стеклообразного в высоко эластичное
состояние, Т2 – температура перехода
из высокоэластичного в вязкотекучее
состояние.
Рис.2 Реакции образования
полимеров: а) – полимеризация, б) -
поликонденсация
Термопластичные полимеры получают по реакции полимеризации, протекающей по схеме пМ-->Мп (рис.2), где М — молекула мономера, Мп — макромолекула, состоящая из мономерных звеньев, п—степень полимеризации.
При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естественных условиях невозможен, и все природные полимеры образовались иным путем. Современная химия создала новый инструмент — реакцию полимеризации, а благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализуется лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.
Реакционноспособные молекулы термореактивных полимеров могут образоваться более простым и естественным путем— постепенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их
«конденсацию», называют реакцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рис. 2).
Именно эта реакция реализуется в природе; она может быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет широкие возможности изготовлять различные изделия на нехимических предприятиях, в том числе на радиозаводах.
Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифицировать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.
СВОЙСТВА ПОЛИМЕРОВ
Механические свойства. Одна из основных особенностей полимеров состоит в том, что отдельные отрезки цепей (сегменты) могут перемещаться путем поворота вокруг связи и изменения угла (рис.3). Такое смещение, в отличие от растяжения связей при упругой деформации истинно твердых тел, не требует большой энергии и происходит при невысокой температуре. Эти виды внутреннего движения — смена конформаций, несвойственные другим твердым телам, придают полимерам сходство с жидкостями. В то же время большая длина искривленных и спиралеобразных молекул, их ветвление и взаимная сшивка затрудняют смещение, вследствие чего полимер приобретает свойства твердого тела.
Для некоторых полимеров в виде концентрированных растворов и расплавов характерно образование под действием поля (гравитационного, электростатического, магнитного) кристаллической структуры с параллельной упорядоченностью макромолекул в пределах небольшого объема—домена. Эти полимеры — так называемые жидкие кристаллы—находят широкое применение при изготовлении светоиндикаторов.
Полимерам наряду с обычной упругой деформацией свойствен ее оригинальный вид — высокоэластическая деформация, которая становится преобладающей при повышении температуры. Переход из высокоэластического состояния в стеклообразное, характеризующееся лишь упругой деформацией, называется стеклованием. Ниже температуры стеклования Тст состояние полимера твердое, стекловидное, высокоупругое, выше—эластическое. Если температура стеклования выше температуры эксплуатации, то полимер используется в стеклообразном состоянии, если Тст104 МПа, полужесткие E=(5...10). 103 МПа, мягкие E=(1...5)*103 МПа. Наиболее эластичные полимеры—эластомеры (каучуки) имеют модуль упругости E=10 МПа.
Как видно, даже высокомодульные полимеры уступают по жесткости металлам в десятки и сотни раз- Этот недостаток удается в значительной мере преодолеть введением в полимер волокнистых и листовых наполнителей.
Особенность полимеров состоит также в том, что их прочностные свойства зависят от времени, т. е. предельная деформация устанавливается не сразу после приложения нагрузки. Такая замедленная реакция их на механические напряжения объясняется инерционностью процесса смены конформаций, что можно представить с помощью модели (рис.4). Для полимеров, находящихся в высокоэластическом состоянии, закон Гука в простейшей форме неприменим, т. е. напряжение непропорционально деформации. Поэтому обычные методы испытаний механических свойств применительно к полимерам могут давать неоднозначные результаты. По той же причине инженерных расчетных способов конструирования деталей из полимеров пока еще не существует и преобладает эмпирический подход.
Теплофизические свойства. Коэффициент теплопроводности полимеров значительно ниже, чем других твердых тел,—около 0,2 ... 0,3 В/(м*К), поэтому они являются теплоизоляторами. Вследствие относительной подвижности связей и смены конформаций полимеры имеют высокий ТКЛР (10-4 ... 10-5 К-1).
Можно было бы поэтому полагать, что они плохо совместимы с материалами, имеющими меньший ТКЛР,—металлами и полупроводниками. Однако высокая эластичность полимеров и сравнительно небольшой интервал рабочих температур позволяет широко применять их в виде пленок, нанесенных на поверхность любых материалов.
Диапазон температур, при которых можно эксплуатировать полимеры без ухудшения их механических свойств, ограничен. Нагревостойкость большинства полимеров, к сожалению, очень низка — лишь 320...400 К и ограничивается началом размягчения (деформационная стойкость). Помимо потери прочности повышение температуры может вызвать и химические изменения в составе полимера, которые проявляются как потеря массы. Способность полимеров сохранять свой состав при нагревании количественно характеризуется относительной убылью массы при нагреве до рабочей температуры. Допустимым значением убыли массы считается 0,1 ... 1%. Полимеры, стойкие при 500 К, считаются нагревостойкими, а при 600...700 К — высоконагревостойкими. Их разработка, расширение выпуска и применения приносят большой народнохозяйственный эффект.
Химические свойства. Химическая стойкость полимеров определяется разными способами, но чаще всего по изменению массы при выдержке образца в соответствующей среде или реагенте. Этот критерий, однако, не является универсальным и не отражает природу химических изменений (деструкции). Даже в стандартах (ГОСТ 12020—66) предусмотрены лишь качественные ее оценки по балльной системе. Так, полимеры, изменяющие за 42 суток массу на 3 ... 5%, считаются устойчивыми, на 5 ... 8%— относительно устойчивыми, более 8 ...
10%—нестойкими- Конечно, эти пределы зависят от вида изделия и его назначения.
Для полимеров характерна высокая стойкость по отношению к неорганическим реактивам и меньшая — к органическим. В принципе все полимеры неустойчивы в средах, обладающих резко выраженными окислительными свойствами, но среди них есть и такие, химическая стойкость которых выше, чем золота и платины. Поэтому полимеры широко используются в качестве контейнеров для особо чистых реактивов и воды, защиты и герметизации радиокомпонентов, и особенно полупроводниковых приборов и ИС.
Особенность полимеров состоит еще и в том, что они по своей природе не являются вакуумплотными. Молекулы газообразных и жидких веществ, особенно воды, могут проникать в микропустоты, образующиеся при движении отдельных сегментов полимера. даже если его структура бездефектна.
Для качественной оценки сорбционно-диффузионных процессов в полимерах используются три параметра: коэффициент диффузии D, м2/с; коэффициент растворимости 5, кг/(м3*Па); коэффициент проницаемости р, кг/(м*Па*с), причем p=DS. Так, для воды в полиэтилене D=0,8-10-12 м2/c, S=10-3 кг(м3 Па) и р=8*10-16 кг/(м*Па*с).
Полимеры выполняют роль защиты металлических поверхностей от коррозии в случаях, когда:
1) толщина слоя велика
2) полимер оказывает пассивирующее действие на активные (дефектные) центры металла, тем самым подавляя коррозионное действие влаги, проникающей к поверхности металла.
Как видно, герметизирующие возможности полимеров ограничены, а пассивирующее их действие неуниверсально. Поэтому полимерная герметизация применяется в неответственных изделиях, эксплуатирующихся в благоприятных условиях.
Для большинства полимеров характерно старение — необратимое изменение структуры и свойств, приводящее к снижению их прочности. Совокупность химических процессов, приводящих под действием агрессивных сред (кислород, озон, растворы кислот и щелочей) к изменению строения и молекулярной массы, называется химической деструкцией. Наиболее распространенный ее вид — термоокислительная деструкция—происходит под действием окислителей при повышенной температуре. При деструкции не все свойства деградируют в равной мере: например, при окислении кремнийорганических полимеров их диэлектрические параметры ухудшаются несущественно, так как Si окисляется до оксида, который является хорошим диэлектриком.
Электрические свойства. Как правило, полимеры являются диэлектриками, по многим параметрам лучшими в современной технике. Величина удельного объемного сопротивления рv зависит не только от строения, ной от содержания ионизированных примесей — анионов Сl-, F-, I-, катионов Н+, Na+ и других, которые чаще всего вводятся в смолу вместе с отвердителями, модификаторами и т.д. Их концентрация может быть высокой, если реакции отверждения не были доведены до конца. Подвижность этих ионов резко увеличивается с повышением температуры, что приводит к падению удельного сопротивления. Наличие даже весьма малых количеств влаги также способно значительно уменьшить удельное объемное сопротивление полимеров. Это происходит потому, что растворенные в воде примеси диссоциируют на ионы, кроме того, присутствие воды способствует диссоциации молекул самого полимера или примесей, имеющихся в нем. При повышенной влажности значительно уменьшается удельное поверхностное сопротивление некоторых полимеров, что обусловлено адсорбцией влаги.
Диапазон значений рv для большинства полимерных диэлектриков (в условиях нормальной температуры и влажности) составляет 1012 ... 1015
Ом*см. Температурная зависимость удельного сопротивления в большой степени определяется физическим состоянием полимерного диэлектрика. Для полимеров в стеклообразном и кристаллическом состояниях зависимость lnот 1/Т прямолинейна, в высокоэластическом— криволинейна. Вблизи температуры стеклования кривые ln=f(1/T) претерпевают излом. Более резкое изменение удельной проводимости с температурой в области высокоэластического состояния объясняют возрастанием подвижности макромолекул и возникновением группового механизма движения ионов.
Строение макромолекул, характер их теплового движения, наличие примесей или специальных добавок влияют на вид, концентрацию и подвижность носителей. Так, удельное сопротивление полиэтилена повышается в 10 ... 1000 раз после очистки от низкомолекулярных примесей. Сорбция 0.01 ... 0,1% воды полистиролом приводит к снижению удельного сопротивления в 100 1000 раз.
В неполярных полимерных диэлектриках имеет место преимущественно электронная поляризация, в полярных, кроме электронной, могут быть дипольная, миграционная. Под действием электрического поля может происходить смещение участков цепи молекулы—сегментов; это так называемая дипольно-сегментальная поляризация. Смещение полярных групп атомов, находящихся в основной цепи или боковых цепях макромолекулы, проявляется как дипольно-групповая поляризация. В целях получения материала с заданными механическими, электрическими и теплофизическими свойствами широко применяются композиции, состоящие из полимерного связующего, наполнителей и других добавок. В таких полимерах наблюдается и миграционная поляризация.
Диэлектрическая проницаемость более или менее резко зависит от двух основных внешних факторов: температуры и частоты приложенного напряжения. В неполярных полимерах она лишь слабо уменьшается с ростом температуры вследствие теплового расширения и уменьшения числа частиц в единице объема.
В полярных полимерах диэлектрическая проницаемость сначала растет, а затем падает, причем максимум обычно приходится на температуру, при которой материал размягчается, т. е. лежит вне пределов рабочих режимов.
Дипольно-сегментальная и дипольная поляризация, обусловленная тепловым движением боковых групп или отдельных групп атомов основной цепи, сопровождаются потерями, причем наиболее заметны они на частотах 105... 109
Гц.
Диэлектрические потери вызываются не только полярными группами макромолекулы основного вещества, но и полярными молекулами примесей, например остатками растворителя, абсорбированной водой и т. д. Небольшие дипольные потери наблюдаются и в неполярных полимерах, так как даже при тщательной очистке мономеров и полимеров от полярных примесей в макромолекулах имеются карбонильные группы, гидроксильные группы или двойные связи, способные ориентироваться по полю.
Для полимеров, как ни для одних других диэлектриков, характерны процессы накопления поверхностных зарядов — электризация. Эти заряды возникают в результате трения, контакта с другим телом, электролитических процессов на поверхности. Механизмы электризации до конца неясны- Одним из них является возникновение при контакте двух тел так называемого двойного слоя, который состоит из слоев положительных и отрицательных зарядов, расположенных друг против друга. Возможно также образование на поверхности контактирующих материалов тонкой пленки воды, в которой имеются условия для диссоциации молекул примесей. При соприкосновении или трении разрушается пленка воды с двойным слоем и часть зарядов остается на разъединенных поверхностях. Электролитический механизм накопления зарядов при контактировании имеет место в полимерных материалах, на поверхности которых могут быть низко молекулярные ионогенные вещества—остатки катализаторов, пыль, влага.
Технологические свойства. Принадлежность полимеров к термопластичному или термореактивному видам во многом определяет и способы их переработки в изделия. Соотношение их выпуска примерно 3:1 в пользу термопластичных материалов, но следует учитывать, что термореактивные полимеры, как правило, используются в смеси с наполнителями, доля которых может достигать
80%. Поэтому в готовых изделиях соотношение оказывается обратным: большее их количество — реактопласты. Это объясняется высокой технологичностью фенолформальдегидных, полиэфирных, но особенно эпоксидных смол. В производстве последних получение полимера удается приостановить на начальной стадии, когда молекулярная масса составляет всего 500
1000. Такие вещества "по длине цепи средние между мономерами и полимерами, обладающие низкой вязкостью, называются олигомерами. Именно их появление произвело в б0-е годы переворот в технологии переработки полимеров в изделия, которая раньше основывалась на применении давления.
Достоинство олигомеров — низкая вязкость — дает возможность формования изделий при минимальном усилии прессования или вообще без него, под действием собственного веса. Более того, даже в смеси с наполнителями олигомеры сохраняют текучесть, что позволяет набрасывать материал на поверхность макета, не применяя давления, получать детали крупных размеров сложной формы. Низкая вязкость олигомеров позволяет также пропитывать листы ткани, а их склеивание под прессом и отверждение лежит в основе производства слоистых пластиков—оснований печатных плат. Олигомеры как ни один полимер подходят для пропитки и наклейки компонентов, особенно когда применение давления недопустимо. Для снижения вязкости в олигомер можно вводить добавки, которые способствуют повышению пластичности, негорючести, биологической стойкости и т, д.
Применяемая для этих целей смола чаще всего является смесью различных веществ, которую не всегда удобно готовить на месте, на предприятии- потребителе, из-за необходимости смесительного и дозирующего оборудования, пожароопасности, токсичности и других ограничений. Поэтому широкое распространение получили компаунды—смеси олигомеров с отвердителями и другими добавками, полностью готовые к употреблению и обладающие при обычной температуре достаточной жизнестойкостью. Компаунды—жидкие или твердые легкоплавкие материалы—формируются в изделие, после чего при повышенной температуре проводится отверждение и образование пространственной структуры.
Если изделия на основе термореактивных смол получают методом горячего прессования, то композиция, содержащая кроме смолы еще рубленое стекловолокно или какой-либо порошкообразный наполнитель и другие добавки, готовят заранее, и она поступает потребителю в виде гранул или порошка, называемых прессовочным материалом (иногда — пресс-порошком). Несколько отличаются от него меньшей степенью полимеризации префиксы и препреги, которые благодаря их меньшей вязкости лучше заполняют прессовочные формы.
Технологические свойства как термореактивных, так и термопластичных полимеров характеризуются текучестью (способностью к вязкому течению), усадкой (уменьшением линейных размеров изделий по отношению к размерам формующего инструмента), таблетируемостыо (пресс-порошков).
Выше было отмечено, что олигомеры, расплавы и растворы термопластичных полимеров являются вязкотекучими, так называемыми неньютоновскими жидкостями. Их вязкость зависит не только от природы вещества и температуры, как в ньютоновских жидкостях, но и от других факторов, например толщины слоя. Это—проявление эффекта вязкопластичности, который приводит, например, к тому, что краска, нанесенная на поверхность, стекает не в тонком слое, а в более толстом. Другое проявление необычных свойств так называемых псевдопластичных жидкостей— уменьшение вязкости с увеличением скорости сдвига. Этот эффект характерен для растворов и расплавов большинства полимеров и объясняется тем, что с увеличением скорости течения асимметричные частицы постепенно ориентируются, в результате вязкость убывает до тех пор, пока сохраняется возможность все более полной ориентации. Кривые, характеризующие зависимость вязкости г от скорости V, называются реологическими (реология—наука о течении в жидкостях под действием внешних сил).
Необычные свойства смесей жидких смол с мелкодисперсными наполнителями, частицы которых имеют асимметричную форму
(тальк, слюдяная мука, аэросил-коллоидный SiO2), проявляются в том, что в спокойном состоянии они обладают высокой вязкостью, свойственной гелям, а при механическом воздействии (перемешивании или встряхивании) переходят в жидкое состояние. Смеси, обладающие этим свойством, называются тиксотропными. Тиксотропные компаунды нашли широкое применение для защиты радиодеталей наиболее простым методом — окунания. Вязкость компаунда снижают с помощью вибрации (нагрев не требуется). При извлечении детали из жидкой смеси с одновременным встряхиванием избыток ее стекает, а оставшаяся часть ее после извлечения вновь гелирует, образуя равномерное по толщине покрытие, не содержащее пузырей и вздутий, так как изделие и компаунд не нагреваются. Тиксотропные свойства некоторых полимерных композиций используют также при изготовлении специальных красок и клеев.
ПЛАСТМАССЫ
Пластмассы (пластики)—материалы на основе полимеров, находящиеся в период формования изделий в вязкотекучем или высокоэластическом состоянии, а при эксплуатации—в стеклообразном или кристаллическом. В пластмассе наряду с полимером могут содержаться наполнители, причем в термопластичные их вводят реже и в меньших количествах, чем в термореактивные. Поэтому понятия термопластичный полимер, «термопласт», «пластик», обычно совпадают.
Основой так называемых «ненаполненных» термопластов являются полимеры, структура которых почти полностью формируется при их синтезе в условиях специализированного химического производства. Возможности регулирования их свойств на стадии изготовления изделий состоят в несущественных изменениях структуры, путем отжига или ориентации, стабилизации и пластификации с помощью модифицирующих добавок, изменяющих их свойства. Такими добавками к полимерам являются:
. стабилизаторы, повышающие стойкость к термоокислительным процессам, воздействию излучения, микроорганизмов и т. п.;
. пластификаторы и эластификаторы, повышающие текучесть в вязкотекучем состоянии и эластичность в стеклообразном
(ударопрочность);
. легирующие полимеры, изменяющие степень кристалличности, структуру и свойства матрицы;
. пигменты для окрашивания.
Один из основных признаков термопластов: наличие двух твердых состояний — стеклообразного и высокоэластического — и жидкого—вязкотекучего. Оба перехода—плавление и стеклование являются плавными, нерезкими, и механические свойства почти непрерывно и обратимо изменяются при изменении температуры.
Отмеченная выше особенность химической структуры термопластов определяет их свойства—гибкость цепей и возможность смены конформаций, что и объясняет существование в них нового высокоэластического состояния, характерного для широкого диапазона температур.
Первым термопластом, нашедшим широкое применение, был целлулоид—искусственный полимер, полученный путем переработки природного—целлюлозы. Он сыграл большую роль в технике, особенно в кинематографе, но вследствие исключительной пожароопасности (по составу целлюлоза очень близка к бездымному пороху) уже в середине XX в. ее производство упало почти до нуля.
Развитие электроники, телефонной связи, радио настоятельно требовало создания новых электроизоляционных материалов с хорошими конструкционными и технологическими свойствами. Так появились искусственные полимеры, изготовленные на основе той же целлюлозы, названные по первым буквам областей применения этролами. В настоящее время лишь 2 ... 3% мирового производства полимеров составляют целлюлозные пластики, тогда как примерно
75%—синтетические термопласты, причем 90% из них приходится на долю только трех: полистирола, полиэтилена, поливинилхлорида.
Полистирол—неполярный полимер, широко применяющийся в электротехнике, сохраняющий прочность в диапазоне 210 350 К. Благодаря введению различных добавок приобретает специальные свойства: ударопрочность, повышенную теплостойкость, антистатические свойства, атмосферостойкость, пенистость. Недостатки полистирола—хрупкость, низкая устойчивость к действию органических растворителей (толуол, бензол, четыреххлористый углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он набухает).
Полистирол вспенивающийся широко используется как теплозвукоизоляционный строительный материал. В радиоэлектронике он находит применение для герметизации изделий, когда надо обеспечить минимальные механические напряжения, создать временную изоляцию от воздействия тепла, излучаемого другими элементами, или низких температур и устранить их влияние на электрические свойства (tg6, е), следовательно, — в бортовой и
СВЧ-аппаратуре.
Полиэтилен—полимер с чрезвычайно широким набором свойств и использующийся в больших объемах, вследствие чего его считают королем пластмасс. Регулируя степень кристаллизации, условия синтеза и добавки, прочность полиэтилена можно варьировать в пределах 8 ... ]5 ГПа, а относительное удлинение 500 ... 100%. Полиэтилен обладает исключительно высокой стойкостью против химической деструкции: даже за 10... 12 лет эксплуатации прочность его снижается лишь на ј. Благодаря химической чистоте и неполярному строению полиэтилен обладает высокими диэлектрическими свойствами: его удельное сопротивление 1014 ... 1016
Ом*см. tg =0,0005. Епр30 МВ/м. Они в сочетании с высокими механическими и химическими свойствами обусловили широкое применение полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.
Помимо полиэтилена общего назначения выпускаются его многие специальные модификации, среди которых: антистатический, с повышенной адгезионной способностью, светостабилизированный, самозатухающий, ингибитированный (для защиты от коррозии), электропроводящий (для экранирования).
Одним из наиболее прогрессивных методов обработки полиэтилена является радиационное сшивание, происходящее под действием пучков ускоренных электронов. Такое воздействие приводит к существенному увеличению прочности на растяжение и модуля упругости, твердости, термостойкости и возникновению эффектов памяти и термоусаживания. Эти эффекты находят все более широкое применение в технологии. Изделие, например трубку или пакет, облучают электронами, раздувают горячим воздухом при 423 К- Затем трубку насаживают на штуцер или в пакет, упаковывают продукцию. После этого достаточно небольшого нагрева, и полиэтилен, «вспомнив» первоначальную форму, дает большую усадку, в результате которой образуется прочное надежное соединение трубка—штуцер, а пакет плотно облегает продукцию. Достоинство радиационной обработки состоит в том, что она не требует больших затрат энергии и не загрязняет материал. Она применяется в кабельной промышленности и при изготовлении различных узлов РЭА.
Главный недостаток полиэтилена—сравнительно низкая нагревостойкость.
Фторопласт (политетрафторэтилен—ПТФЭ)—один из самых термостойких и холодостойких полимеров, сохраняет механическую прочность в интервале 3 ...
600 К. Плотность — 2,2 ... 2,5 г/см3, относительное удлинение 250 ... 500%, температура разложения не менее 673 К; ТКЛР при температуре 293 К — 2,5*10-
5 К-1; при Т383 К — 1*10-4 К-1. Удельное сопротивление (1038 ... 1020
Ом*см) мало зависит от влажности и температуры. Так, при Трабмах (573 К) оно снижается лишь в 100 ... 1000 раз; tg фторопласта равен 0,0002,
Јnp=40 ... 80 МВ/м. Исключительно высока его химическая стойкость, в том числе длительная к воздействию морского тумана, солнечной радиации, плесневых грибков. По отношению к большинству неорганических и органических реагентов он настолько пассивен, что методы испытаний на стойкость в этих средах отсутствуют. Фторопласт обладает также высокой радиационной стойкостью и применяется для изоляции проводов на атомных электростанциях.
Такие провода можно использовать и в качестве нагревателей, погруженных непосредственно в растворы кислот и щелочей. Они не боятся попадания масел, керосина, гидравлических жидкостей при повышенных температурах и широко применяются для изоляции бортовых авиационных кабелей. Обладают они преимуществом и при эксплуатации в разреженной атмосфере, где условия теплоотвода ухудшены. У фторопласта незначительна зависимость диэлектрической проницаемости от температуры, поэтому он фазостабилен — не изменяет электрическую длину в широком диапазоне температур и частот. Это позволяет использовать его в РЭА с фазово-импульсной модуляцией, РЛС и измерительных фазочувствительных системах. Негорючесть фторопласта характеризуется тем, что он способен загораться только в чистом кислороде, а это резко отличает его, например, от полиэтилена; теплота сгорания невелика—в 10 раз меньшая, чем полиэтилена; плавления при горении нет, фторопласт в пламени лишь обугливается; при горении или тлении образуется немного дыма (но дым содержит ядовитый фторфосген, поэтому при температуре выше 773 К фторопласт опасен); фторопласт горит в открытом пламени, но после его удаления горение прекращается, т. е. он неспособен распространять горение. При нагреве в вакууме фторопласт не выделяет газообразных продуктов, и его можно использовать как подложки тонкопленочных ГИС. Эти качества свидетельствуют о том, насколько незаурядным материалом является фторопласт, а также и о том, чего в будущем можно ожидать от полимеров.
У фторопласта есть недостатки, которые вполне естественно продолжают его достоинства.
1. Вследствие химической пассивности он также и адгезионно инертен, т.е. трудно поддается склеиванию. Однако способы преодоления этой инертности уже найдены. Это либо обработка в расплаве окислителей при Т>370 К, либо в плазме тлеющего разряда в кислороде. Благодаря этому выпускаются фольгированные фторопластовые пленки и пленки с односторонним липким слоем.
2. В отличие от типичных термопластов фторопласт при повышении температуры не переходит в вязкотекучее состояние и его нельзя перерабатывать в экструдерах, так как вязкость его при 626 К
(350°С) все еще высока—около 1010 Па-с. Поэтому пленку готовят значительно более дорогим методом строжки на прецизионных токарных станках.
3. Фторопласт обладает ползучестью и плохо работает под нагрузкой.
Механические свойства его могут быть улучшены путем радиационного модифицирования и армирования стекловолокном.
Полиимид — новый класс термостойких полимеров, ароматическая природа молекул которых определяет их высокую прочность вплоть до температуры разложения, химическую стойкость, тугоплавкость. Полиимидная пленка работоспособна при 473 К (200°С) в течение нескольких лет, при 573 К—1000 ч, при 673 К—до 6 ч. Кратковременно она не разрушается даже в струе плазменной горелки. При некоторых специфических условиях полиимид превосходит по температурной стойкости даже алюминий. Так, если к пленке или фольге прикасаются нагретым стержнем и определяется температура, при которой образец разрушается за 5 с (температура нулевой прочности), то для алюминия она составляет 788 К, для полиимида—1088 К.
Полиимид, в отличие от фторопласта, легко подвергается травлению в концентрированных щелочах, что позволяет готовить сквозные отверстия в пленке. Таким методом получают электрические переходы при формировании многослойных коммутационных плат на полиимидной пленке. Чтобы использовать ее как подложку для вакуумного напыления тонкопленочных проводниковых слоев
(обычно Cr—Си), необходима предварительная обработка — активация поверхности с целью преодоления ее адгезионной инертности- Активация представляет, по существу, частичную деструкцию или модификацию внешних слоев с образованием ненасыщенных адсорбционно-способных связей.
Достигается это в результате воздействия концентрированного (около 250 г/л) раствора NaOH с добавкой жидкого стекла при 353 К (80 °С). Возможна и активация поверхности полиимида в плазме тлеющего разряда в атмосфере кислорода, однако такой обработки недостаточно для надежной металлизации, особенно если платы в процессе дальнейшей обработки и эксплуатации подвергаются изгибам. Полиимид вполне стабилен при нагреве в вакууме, поэтому его используют как подложки гибких тонкопленочных коммутационных плат (резистивные элементы на таких подложках не изготавливают). В отличие от фторопласта полиимид пригоден и для многослойных плат благодаря тому, что позволяет изготовлять переходные отверстия диаметром 70 ... 100мкм.
Полиимид является слабополярным среднечастотным материалом, поскольку его tg=0,003. Полиимид обладает повышенным влагопоглощением, и, вероятно, поэтому диэлектрические потери уменьшаются с повышением температуры: так, при 493 К его tg=0,0006. Полиимид выпускается в различных видах:
1. Пленка толщиной 8 ... 100 мкм, в том числе фольгированная, предназначенная для гибких печатных плат, шлейфов и подложек тонкопленочных ГИС.
2. Лак ПАК, стойкий после высыхания при 470 ... 520 К, ограниченно при
573 К, кратковременно при 670 К.
3. Пресс-материал для получения изделий горячим прессованием при 590 К и давлении 100 МПа.
4. Пенопласт (пенополиимид) с плотностью 0,8 ... 2,5 г/см5, применяющийся в качестве тепло- и электроизоляционного материала для температур 90 ... 520 К-
5. Стеклопластик на основе полиимида, стойкий до 670 К, и углепластик, не теряющий механической прочности при 550 К.
6. Изоляционная лента, стойкая при температуре до 500 К.
Недостаток полиимида—повышенное влагопоглощение (1 ... 3% за 30 сут.), поэтому он нуждается в технологической сушке (особенно при изготовлении изделий из пресс-порошков) и защите.
Первыми реактопластами, полученными около 100 лет назад, были фенолформальдегидные смолы (ФФС). Компонентами этих смол являются фенол и формальдегид, реакция поликонденсации которых происходит при нагреве до 450
.. - 470 К. Известны два типа ФФС— резольные и новолачные, несколько отличающиеся по свойствам. Исходным сырьем для ФФС является каменный уголь, что и объясняет дешевизну и постоялый рост производства, особенно в виде теплоизоляционных пенопластов для строительной промышленности. В электронике ФФС широко применяются для изготовления слоистых пластиков, покрытий и красок (лак на основе ФФС называется бакелитовым), деталей электроизоляционной аппаратуры, сепараторов аккумуляторов и т. д.
Удельное сопротивление отвержденной ФФС — 1012 Ю13 Ом- см, tg= 0,015 при f=106 Гц, электрическая прочность 10 ... 18 МВ/м,
=10 ... —11 (50 Гц) и=6 (106 Гц). Диапазон рабочих температур 210
... 470 К. Композиции на основе ФФС и рубленного углеродного волокна
(углепрессволокнит) обладают повышенной нагревостойкостью — кратковременно до 800 К. Широко применяются в радиоэлектронике гетинакс и текстолит—слоистые пластики на основе ФФС с бумажным и тканевым наполнителями. Недостатки ФФС—хрупкость, высокая вязкость олигомеров и высокая температура отверждения.
Эпоксидные смолы — продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца

Благодаря высокой реакционной способности этих колец отверждение эпоксидных олигомеров можно осуществить с помощью многих соединений и таким образом варьировать температурно-временные режимы обработки и свойства пластмассы. Для холодного отверждения эпоксидных олигомеров применяют алифатические полиамины в количестве 5 ... 15% от массы олигомера.
Жизнеспособность смеси низкая (1 ... З ч), длительность отверждения, наоборот, высокая—24 ч, причем степень полимеризации при этом лишь 60 ...
70% и продолжает увеличиваться еще в течение 10 ... 30 сут.
Реакция отверждения смол с алифатическими полиаминами экзотермична: в большом объеме может произойти саморазогрев до температуры выше 500 К, что приводит к деструкции полимера и растрескиванию изделия. Поэтому предпочтительнее горячее отверждение, которое осуществляют ароматическими полиаминами (15 ... 50% от массы) с нагревом до 370 ... 450 К в течение 4
16 ч, ангидридом (50..100%, 39…450 К, 12... 24 ч) или синтетическими смолами (25 ... 75%, 420 ... 480 К, 10 мин ... 12 ч). При изготовлении изделий важно избегать как недоотверждения, которое проявляется в повышенных диэлектрических потерях и недостаточной жесткости, так и переотверждения, сопровождающегося потерей эластичности. Достоинства эпоксидов состоят в отсутствии побочных продуктов и очень малой усадке (0,2
... 0,5%) при отверждении, высокой смачивающей способности и адгезии к различным материалам. Механическая прочность, химическая стойкость, совместимость с другими видами смол и олигомеров (ФФС, кремнийорганическими полимерами), большой выбор отвердителей и других добавок—качества, которые делают эти материалы незаменимыми во многих отраслях техники. Если учесть также их высокие диэлектрические и влагозащитные свойства, становится понятным, почему именно эпоксидные смолы стали основным герметизирующим материалом радиокомпонентов и МЭА и связующим главного слоистого пластика
РЭА—стеклотекстолита. Немаловажно, что эпоксидные олигомеры могут быть очищены от примесей, а это сводит к минимуму вредное влияние на поверхность полупроводниковых приборов. Наконец, эпоксидные смолы (отвержденные) оптически прозрачны и широко применяются в оптоэлектронных приборах
(фотоприемниках, светодиодах, оптопарах),
Свойства эпоксидных смол изменяют в широких пределах, используя различные добавки, которые делятся на следующие группы:
. пластификаторы—органические соединения — олигомеры, действующие как внутренняя смазка и улучшающие эластичность и предотвращающие кристаллизацию, отделяя цепи полимера друг от друга;
. наполнители—в небольших количествах вводятся для улучшения прочности и диэлектрических свойств, повышения стабильности размеров, теплостойкости;
. катализаторы—для ускорения отверждения;
. пигменты—для окрашивания.
Компаунды могут быть жидкими и порошкообразными, они имеют узкое назначение и поэтому выпускаются многие десятки их типов, которые можно сгруппировать следующим образом: герметики, заливочные, пропиточные, эластичные, тиксотропные.
Недостатки реактопластов: сравнительно высокое значение tg, неприменимость в качестве диэлектриков СВЧ-техники; неполная воспроизводимость технологических свойств олигомеров так как число эпоксигрупп непостоянно, а это сказывается на температуре и длительности отверждения.
СЛОИСТЫЕ ПЛАСТИКИ
Печатные платы (ПП) являются типовыми несущими конструкциями современной РЭА и ЭВА. Печатная плата представляет собой слоистую структуру, в состав которой входит диэлектрическое основание и печатные проводники (медная фольга). Основания ПП изготавливают из слоистых пластиков—композиций, состоящих из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пропитанных и склеенных между собой различными полимерными связующими. Слоистые пластики отличаются от других материалов тем, что применяемый наполнитель располагается параллельными слоями. Такая структура обеспечивает высокие механические характеристики, а использование полимерных связующих—достаточно высокое удельное электрическое сопротивление, электрическую прочность и малое значение tg6.
В зависимости от материала связующего и наполнителя различают несколько типов слоистых пластиков (см. таблицу).
Наиболее дешевый материала диэлектрических оснований— гетинакс — обладает высокими диэлектрическими свойствами, находит широкое применение в бытовой радиоаппаратуре. Его недостатком традиционно считается повышенное влагопоглощение (1,5 ... 2,5%) через слои бумаги или из открытых их торцевых срезов, а также сквозь полимерное связующее. Выпускается гетинакс на основе ацетилированной бумаги, обладающей повышенной влагостойкостью и способной заменить стеклотекстолиты. Гетинакс для ПП имеет толщину 1 ... 3 мм и не расслаивается при нагреве до 533 К (260 °С) в течение 5 ... 7 с.
Наименование Наполнитель Связующее
слоистого
пластика
Гетинакс Пропиточная бумага толщиной 0,1Фенолформальдегидная смола
мм (ФФС)
Текстолит Хлопчатобумажная и ФФС
синтетическая ткани (саржа,
бязь, шифон, бельтннг, лавсан)
СтеклотекстолСтеклоткани из бесщелочного Совмещенная, эпоксидная и
ит алюмоборосиликатного стекла ФФС- Совмещенная
эпоксикремнийорганическая
смола
Текстолит обладает более высокой прочностью при сжатии и ударной вязкостью и поэтому используется также в качестве конструкционного материала, и его выпускают не только в виде листов, но и плит толщиной до
50 мм.
Стеклотекстолиты благодаря ценным свойствам наполнителя обладают наиболее высокой механической прочностью, теплостойкостью и минимальным влагопоглощением. Они имеют лучшую стабильность размеров, а электрические свойства остаются высокими и во влажной среде. Вледствие ...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 2009

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434