Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Электрорадиоматериалы. Методические указания к лабораторным работам - Рефераты по радиоэлектронике - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по радиоэлектронике

Реферат: Электрорадиоматериалы. Методические указания к лабораторным работам



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
Электрорадиоматериалы
Методические указания к лабораторным работам
Санкт-Петербург
2000
УДК 621.315.4
Составители: ст. преп. Г. И. Иванова, доценты Г. А. Татарникова, Б. В.
Фролов, С.А. Гусев.
Подготовка к переизд.: доценты С.А. Гусев, И.К. Желанкина, Л.Ф.
Погромская; под ред. С.А.Гусева.
Электрорадиоматериалы. Методические указания к лабораторным работам./
Под ред. С.А.Гусева. Изд. второе пер. и доп.; Балт. гос. техн. ун -т,
СПб., 2000, с.
Ил. 26, табл. 18.
©
Содержание
Работа 1. Исследование электрических свойств проводниковых материалов 4
1. Краткие сведения из теории 4
2. Описание экспериментальной установки 6
3. Порядок проведения работы 6
4. Оформление отчета 7
Работа 2. Исследование свойств терморезисторов 7
1. Краткие сведения из теории 7
2. Описание экспериментальной установки 9
3. Порядок выполнения работы. 9
4. Оформление отчета 10
Работа З. Исследование свойств варисторов 11
1. Краткие сведения из теории 11
2. Описание экспериментальной установки 12
3. Порядок выполнения работы 13
4. Оформление отчета 14
Работа 4. Исследование свойств фоторезисторов 14
1. Краткие сведения из теории 14
2. Описание экспериментальной установки 16
3. Порядок проведения работы. 16
4. Оформление отчета 17
Работа 6. Исследование свойств сегнетоэлектриков 17
1. Краткие сведения из теории 17
2. Описание экспериментальной установки 19
3. Порядок выполнения работы 19
4. Оформление отчета 21
Работа 7. Исследование свойств ферромагнитных материалов 21
1. Краткие сведения из теории 21
2. Описание экспериментальной установки 23
3. Порядок выполнения работы 24
4. оформление отчета 25
Работа 1. Исследование электрических свойств проводниковых материалов
Цель работы:
1) определение удельных сопротивлений проводниковых материалов низкого и высокого сопротивления и их зависимости от температуры;
2) определение зависимости величины электродвижущей силы термопар от температуры;
3) оценка длины свободного пробега электронов в различных проводниковых материалах.
1. Краткие сведения из теории
Основные свойства проводниковых материалов характеризуются величиной удельного сопротивления электрическому току (, температурным коэффициентом удельного электрического сопротивления (( (ТК(), величиной термоэлектродвижущей силы ЕТ.
Наилучшими проводниками электрического тока являются металлы. Механизм протекания тока в металлах, находящихся в твердом или жидком состояниях, обусловлен движением свободных электронов, поэтому металлы являются материалами с электронной электропроводностью.
Электропроводность металлов зависит от совершенства кристаллической решетки: чем меньше дефектов имеет кристаллическая решетка, тем выше электропроводность. Поэтому чистые металлы обладают наименьшими значениями удельного сопротивления, а сопротивление сплавов всегда выше сопротивлений металлических компонентов, входящих в их состав.
Металлические проводниковые материалы могут быть разделены на проводники малого сопротивления (( ( 0,1 мкОм(м) – медь, серебро, алюминий и т. д., и проводники (сплавы) высокого сопротивления. Последние в свою очередь делятся на термостойкие сплавы для электронагревательных приборов – нихром, хромаль, фехраль и др., и термостабильные сплавы для образцовых резисторов – манганин, константан.
B соответствии с электронной теорией металлов:
, (1.1) где mo = 9,109(10-31 кг, e = 1,602(10-19 Кл – масса покоя и заряд электрона; ( 105 м/с – средняя скорость теплового движения электронов; no = 1028 м-3 — число электронов в единице объема; (ср – средняя длина свободного пробега электронов.
Величина удельного электрического сопротивления проводников в основном зависит от средней длины свободного пробега электронов (ср. С повышением температуры амплитуда колебаний узлов кристаллической решетки увеличивается, средняя длина свободного пробега электронов уменьшается
(рис.1.1), а удельное сопротивление возрастает. произведение удельного сопротивления на величину средней длины свободного пробега электрона является величиной постоянной (((ср = а = const.
Температурным коэффициентом удельного сопротивления (( (ТК() называется относительное изменение удельного сопротивления при изменении температуры на один Кельвин (градус):

(1.2)
Зависимость удельного сопротивления от температуры вызывается не только уменьшением длины свободного пробега электронов, но и увеличением линейных размеров проводника. Поэтому (( имеет две составляющие: (( =
(R +(l, (1.3) где (R – температурный коэффициент сопротивления в данном интервале температур; (l – температурный коэффициент линейного расширения проводника, значения которого приведены в табл. 1.1. У чистых металлов (( (( (l, поэтому для них (( ( (R. для термостабильных металлических сплавов такое приближение не справедливо.
Таблица 1.1

Металлы и сплавы (l (10-4,
K-1
Медь 0,167
Константан 0,17
Манганин 0,181
Нихром 0,163
Температурный коэффициент электрического сопротивления (ТКR) резистора определяется выражением
, (1.4)
где Ro –сопротивление проводника при температуре То. Производная определяется по касательной к кривой R(T) (рис.1.2). Для определения производной dR/dT = dR/d( (Т – температура в градусах Кельвина, ( – в °С) строится зависимость R(() (рис. 1.2). При заданной температуре (точка A) проводится касательная к кривой R((), на которой выбирается участок ab произвольной длины. Производная определяется выражением dR/d( ( (R(((.
экспериментально удельное электрическое сопротивление определяется по формуле:
,
(1.5) где R – электрическое сопротивление проводника, S, I – площадь поперечного сечения и длина проводника.
При соприкосновении двух различных металлов между ними возникает контактная разность потенциалов. Причиной этого являются неодинаковые значения работ выхода электронов и различные значения концентрации свободных электронов в соприкасающихся металлах.
Термопарой называется устройство, содержащее спай двух проводников или полупроводников. Если спай двух металлов А и В (термопара) имеет температуру T1, а свободные (неспаянные) концы температуру T2, причем
T1>T2, то между свободными концами возникает термо-э.д.с.
, (1.6) где – коэффициент термо-э.д.с. или относительная удельная термо- э.д.с., k=1,381(10-23 Дж/К – постоянная Больцмана, е – заряд электрона, п1, п2 – концентрации свободных электронов в соприкасающихся металлах.
В термопарах используют проводники, имеющие большой и стабильный в рабочем диапазоне температур коэффициент термо-э.д.с.
2. Описание экспериментальной установки
Экспериментальная установка изображена на рис. 1.3. Образцы проволочных резисторов R1–R4, изготовленные из меди, константана, манганина и нихрома, металлопленочный резистор МЛТ-1 (R5) и термопары ТП1–ТП3 помещаются в термостат 1 с термометром 2. Электрическое сопротивление резисторов измеряется омметром 3, э.д.с. термопар – милливольтметром 4.
Переключатели П1 и П2 размещены на плате 5 и позволяют поочередно подключать к измерителям исследуемые проводники и термопары. Там же приведена таблица с указанием вида, длины и сечения исследуемых проводников.
3. Порядок проведения работы
Внимание: все измерения по последующим пунктам проводятся одновременно.
3.1. Определение удельного электрического сопротивления проводников и вычисление (R, ((.
Проводники, помещенные в термостат, поочередно подключить к входным зажимам омметра и замерить их сопротивления сначала при комнатной температуре, а затем при повышении температуры до 90 °С с шагом 10 оС.
Результаты измерений записать с максимальной точностью в табл.1.2.
Таблица 1.2
проводник (, oС 20 30 40 50 60 70 80 90
медь R1
(1
(R1
((1
КонстантанR2

… …
3.2. Определение зависимости термо-э.д.с термопар от температуры.
Одновременно с нагреванием проводников нагреваются помещенные в термостат спаи трех термопар. Холодные концы термопар поочередно подключить переключателем П1 к милливольтметру. Значения измеренных термо-э.д.с. занести в табл. 1.3.
Таблица 1.3
ET, мВ
(, °С

Термопара
медь – константан хромель – алюмель хромель – копель
20

90
4. Оформление отчета
Привести схемы экспериментальных установок, данные измерительных приборов и исследуемых элементов, а также таблицы измерений.
По данным измерений табл. 1.1 построить график зависимости R((). По графику
R((), а также по формулам (1.3), (1.5) рассчитать и занести в таблицу 1.1 значения (R, ((, и ( для каждого из исследованных проводников. По данным таблицы 1.1 построить графики зависимостей R((), (((), (R(() и (((((.
Рассчитать длины свободного пробега электронов для исследованных проводников при комнатной температуре.
По данным таблицы 1.2 и по формуле (1.6) рассчитать средние значения относительной удельной термо-э.д.с. для исследованных термопар. построить графики зависимостей ЕТ(().
Привести краткое описание исследованных в работе материалов (химический состав, электрические свойства, области применения).
Дать краткие выводы по результатам работы.
Контрольные вопросы
1. Какие материалы относятся к классу проводников?
2. Чем обусловлена высокая электропроводность проводников?
3. Как можно классифицировать проводники?
4. Какие факторы и почему влияют на удельное электрическое сопротивление?
5. Что такое температурный коэффициент удельного сопротивления?
6. Для каких материалов и почему важно учитывать линейное расширение при нагревании?
7. Что такое термо-э.д.с., в чем причина ее возникновения?
8. Исходя из каких соображений подбираются материалы для термопар?
Работа 2. Исследование свойств терморезисторов
Цель работы:
а) определение зависимости сопротивления терморезисторов от температуры; б) определение энергии активации и коэффициента температурной чувствительности полупроводника; в) оценка величины постоянной времени тепловой инерции терморезисторов; г) построение динамических вольтамперных характеристик терморезисторов.
1. Краткие сведения из теории
Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры.
Удельная электрическая проводимость полупроводников
,
(2.1) где – концентрация, – подвижность электронов и дырок соответственно.
В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь.
Подвижность носителей при нагревании изменяется сравнительно слабо (по степенному закону, (), а концентрация очень сильно (по экспоненциальному закону, (). Поэтому температурная зависимость удельной проводимости полупроводников подобна температурной зависимости концентрации основных носителей, а электрическое сопротивление терморезисторов может быть определено по формуле:
(2.2) где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника; (Э – энергия активации примесей (для примесных полупроводников) или ширина запрещенной зоны (для собственных полупроводников), k – постоянная Больцмана. постоянная В =(Э/k носит название коэффициент температурной чувствительности и приводится в паспортных данных на терморезистор. экспериментально коэффициент температурной чувствительности определяют по формуле
(2.3) где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2.
На рис. 2.1 приведен график зависимости сопротивления полупроводникового резистора от температуры.
Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления (R. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный (R и называемые позисторами. При нагревании величина сопротивления терморезисторов убывает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение (R приводится для температуры 20 оС. Значения (R терморезисторов для любой температуры в диапазоне 20…150 оС можно определить по формуле:
(2.4) терморезистор характеризуется определенной тепловой инерцией, зависящей от химических свойств полупроводника и конструкции элемента
(площади излучающей поверхности). Тепловая инерция оценивается постоянной времени ( – временем, за которое разность между собственной температурой тела и температурой среды уменьшается в е (2,7183) раз.
Если терморезистор, имеющий температуру (о, поместить в среду с температурой (с((о, то его температура будет изменяться с течением времени по показательному закону:
. (2.5)
На рис.2.2 показан процесс изменения температуры терморезистора при его остывании.
С остыванием терморезистора сопротивление его увеличивается (рис. 2.3).
Знание зависимостей R(() (рис.2.1) и R(t) (рис. 2.3) позволяет, задаваясь значениями R и определяя по кривым рис. 2.1 и 2.3 соответствующие им значения ( и t, построить зависимость ((t) и определить (.

Различают статическую и динамическую вольтамперные характеристики
(ВАХ) терморезистора. При снятии статической ВАХ ток фиксируется после длительной выдержки терморезистора при каждом значении напряжения.
Динамическая ВАХ показывает реакцию терморезистора на воздействие импульсов напряжения разной величины, но одинаковой длительности. ток фиксируется в конце импульса.
Терморезистор обладает одной статической и семейством динамических
ВАХ, соответствующих ряду фиксированных длительностей (t импульсов напряжения. ВАХ терморезистора являются нелинейными. динамические ВАХ терморезистора приведены на рис. 2.4.
При длительности импульса терморезистор не успевает нагреться и сопротивление его практически не изменяется с ростом напряжения. При длительности терморезистор нагревается, и ВАХ становится существенно нелинейной. Чем больше длительность импульса, тем больше ток при одной и той же величине напряжения. Статическая ВАХ соответствует .
2. Описание экспериментальной установки
Эксперимент проводится на установке аналогичной изображенной на рис.1.3. терморезистор помещается в термостат, температура внутри которого измеряется термометром или термопарой. Сопротивление резистора измеряется омметром. снятие вольтамперных характеристик выполняется по схеме, приведенной на рис. 2.5. Измерительной цепь питается от источника постоянного регулируемого напряжения ИП со встроенным вольтметром V. Ток через терморезистор измеряется миллиамперметром.

3. Порядок выполнения работы.
3.1. снятие зависимости R(() сопротивления терморезистора от температуры.
Включить термостат, электронный термометр и омметр. Измерить сопротивление терморезистора при различных температурах – от комнатной до максимальной, равной 90°С, с интервалом (( =10 °С. Результаты опыта занести в табл. 2.1.
Таблица 2.1
Опыт Расчет Примечание
( R Т (R
oC Ом К град.-l
20 Терморезистор типа
… ...
90
3.2. определение тепловой постоянной времени терморезистора.
Измерив сопротивление терморезистора при 90 °С, быстро извлечь его из термостата. Момент извлечения принять за t = 0. Отключить термостат. фиксируя время, измерять сопротивление терморезистора при его остывании до тех пор, пока оно не увеличится примерно в три раза. Данные измерений занести в табл. 2.2.
Таблица 2.2
t с 0 10 20 30 40 50 60 70 и т. д.
R Ом
3.3. Снятие динамических вольтамперных характеристик
Собрать электрическую схему установки в соответствии с рис. 2.5.
Установить напряжение на выходе источника питания ИП равное 5В.
Замкнув ключ К, записать показания миллиамперметра в начальный момент времени и далее через каждые 10 секунд. Через 60 с ключ разомкнуть. Перед следующим измерением выдержать минутную паузу для охлаждения терморезистора. Повторить измерения для напряжений 10, 15, 20, 25, 30 В; длительность паузы с ростом напряжения следует увеличивать. Результаты опыта занести в табл. 2.3.
Таблица 2.3
U, Вi (мА) через с
t = 0 10 20 30 40 50 60 Примечание
5 Тип резистора …
10

30
4. Оформление отчета
Привести схемы экспериментальных установок, данные измерительных приборов и исследуемых элементов, а также таблицы измерений.
Для исследованного температурного диапазона определить по формулам (2.2) и
(2.3) энергию активации (Э и коэффициент температурной чувствительности В терморезистора.
Рассчитать по формуле (2.4) и занести в табл. 2.1 значения (R. по данным табл. 2.1 построить графики зависимостей R=f(() и (R= f((). на основании данных табл. 2.1 и 2.2. построить график зависимости ((t).
Определить постоянную времени ( тепловой инерции терморезистора. За температуру среды (с принять комнатную температуру. по данным табл. 2.3 построить динамические вольтамперные характеристики терморезистора. дать краткие выводы по результатам работы.
Контрольные вопросы
1. Что называют терморезистором?
2. Чем обусловлена электропроводность полупроводников?
3. В чем причина сильной температурной зависимости сопротивления полупроводниковых резисторов?
4. Что такое коэффициент температурной чувствительности, как его можно определить экспериментально?
5. Почему терморезисторы обладают отрицательным температурным коэффициентом сопротивления?
6. Что такое постоянная времени терморезистора, отчего зависит ее величина?
7. Как практически можно определить постоянную времени терморезистора?
8. В чем различие между статической и динамической ВАХ терморезистора?
Работа З. Исследование свойств варисторов
Цель работы – исследование основных свойств варисторов и иллюстрация их практического применения.
1. Краткие сведения из теории
варистором называется нелинейный полупроводниковый резистор, электрическое сопротивление которого изменяется в зависимости от приложенного напряжения.
Варисторы изготавливаются из размолотого карбида кремния (SiC) с добавкой связующего вещества.
Причинами, обусловливающими нелинейность вольтамперной характеристики варистора, являются:
– микронагрев контактов между отдельными зернами карбида кремния, приводящий к возрастанию проводимости элемента во всем объеме;
– увеличение проводимости вследствие частичного пробоя оксидных пленок, покрывающих зерна карбида кремния, при напряженностях электрического поля E
= 105…106 В/м;
– существование на поверхности зерен карбида кремния запирающих р-п- переходов, обусловленных различным характером электропроводности по поверхности и в объеме отдельного зерна SiC.
ВАХ варистора (рис. 3.1), как и всякого нелинейного резистора, в рабочей точке (точка А) характеризуется статическим и дифференциальным сопротивлениями
(3.1) где МU, MI — масштабы по осям координат.
Степень нелинейности ВАХ оценивается коэффициентом нелинейности
,
(3.2) который у варисторов довольно велик (( = 2…7) и несколько меняется в различных точках ВАХ. Разделяя переменные в выражении (3.2) и интегрируя, можно получить аналитическую аппроксимацию ВАХ варистора ,
(3.3) где В – постоянная, зависящая от свойств полупроводникового материала и геометрических размеров варистора.
Варисторы широко применяются в технике для защиты от перенапряжений
(искрогасители), в стабилизаторах и ограничителях напряжения, в преобразователях сигнала (умножители частоты). В данной работе исследуется мостовой стабилизатор напряжения на варисторах (рис. 3.2). напряжение на выходе стабилизатора равно разности напряжений на варисторе (U) и на линейном резисторе (UR): Uвых = U - UR. С ростом входного напряжения
Uвх растет ток в элементах моста. Выходное напряжение, как видно из рис.
3.3, вначале увеличивается, затем падает до нуля и после изменения знака снова растет по абсолютной величине. Внешняя характеристика стабилизатора
Uвых(Uвх) в режиме холостого хода приведена на рис. 3.4.
Выходное напряжение остается приблизительно постоянным при изменении входного напряжения от Uвх1 до Uвх2, когда величина дифференциального сопротивления варистора равна или близка к величине сопротивления линейного резистора. Количественной оценкой стабилизации напряжения является коэффициент стабилизации
(3.4)
При синусоидальном входном напряжении мост стабилизирует действующее значение выходного напряжения. Последнее содержит третью гармонику, удельный вес которой возрастает с ростом амплитуды входного напряжения.
2. Описание экспериментальной установки
Вольтамперные характеристики варистора снимаются по схеме рис. 2.5.
Осциллографическое исследование варистора проводится по схеме рис. 3.5.
Измерительной цепь питается от задающего генератора ЗГ. Переключатель
П подключает на вход осциллографа ЭО варистор или (для масштабирования осциллографа) линейный резистор R. на вертикальные пластины ЭО подается напряжение с линейного резистора Rо, пропорциональное току через варистор, на горизонтальные пластины – напряжение на варисторе. Таким образом, на экране осциллографа воспроизводится динамическая ВАХ исследуемого элемента.
Входное напряжение измеряется цифровым вольтметром V.
Исследование мостового стабилизатора на варисторах проводится по схеме рис.3.6. Питание осуществляется или от источника постоянного напряжения, или от задающего генератора в зависимость от положения переключателя П1.

Переключатель П2 служит для переключения вольтметра и осциллографа к входным или выходным зажимам моста.
3. Порядок выполнения работы
1. Снятие вольтамперной характеристики варистора на постоянном токе
Подать питание на измерительную схему рис. 2.5. Изменяя входное напряжение от 0 до 60 В, замерить и записать в табл. 3.1 значения тока через варистор (6…8 точек).
Таблица 3.1
Oпыт Расчет
U I rct Rд (
В мА Ом –

2. Осциллографическое исследование варистора.
Подать питание на схему рис.3.5. Зарисовывать на кальку ВАХ варистора при напряжении на входе 60 В. Определить масштабы по току (по оси у) и по напряжению (по оси x) для чего, не трогая регуляторов усиления осциллографа, переключатель П1 перевести в положение «2». На экране осциллографа получится наклонная прямая – ВАХ линейного резистора.
Регулируя напряжение, добиться того, чтобы ее крайние точки не выходили за пределы экрана осциллографа. Масштабы (при R >> Ro) рассчитываются следующим образом:
(3.5) где U – напряжение, измеренное вольтметром, X, Y – проекции ВАХ на оси х, у.
3. Исследование мостового стабилизатора напряжения на варисторах
Опыт проводится по схеме рис. 3.6 в режиме холостого хода (Rн = (). а) Исследование моста на постоянном токе.
Отключить осциллограф рубильником К. Переключатель П2 установить в положение «1». Подключить к схеме источник постоянного напряжения и регулируя его напряжение, установить по цифровому вольтметру V напряжение
Uвх на входе стабилизатора 10 В. Установить переключатель П2 в положение
«2» и измерить напряжение Uвых на выходе стабилизатора. Провести аналогичные измерения при увеличении входного напряжения до 80 В (через 10
В). Результаты опыта занести в табл.3.2. Коэффициент стабилизации рассчитывается по формуле 3.4.
Таблица 3.2
Uвх, В Uвых =, В Uвых( , В Kст = Kст (
0 0 0
10
20

80

После проведения опытов отключить от схемы источник постоянного напряжения. б) Исследование моста на переменном токе.
Включить осциллограф и подключить его к исследуемой цепи, замкнув рубильник К. Переключить клеммы и переключатель рода работы цифрового вольтметра в режим измерения переменного напряжения. Подать на вход схемы переменное напряжение от задающего генератора ЗГ и провести измерения, аналогичные п. 3.3.а. Результаты измерений занести в табл. 3.2. Для трех значений напряжения, соответствующих участкам ab, bc и cd на рис.3.4, снять на кальку осциллограммы напряжений Uвых(t).
4. Оформление отчета
Привести схемы экспериментальных установок, данные измерительных приборов и исследуемых элементов, а также таблицы с результатами измерений и вычислений.
По данным таблицы 3.1 построить ВАХ варистора, снятую на постоянном токе.
Построить с указанием масштабов по осям ВАХ варистора на переменном токе.
По данным табл. 3.2 построить характеристики «вход-выход» стабилизатора напряжения Uвых(Uвх), снятые на постоянном и переменном токе.
Привести качественные осциллограммы напряжений на выходе мостового стабилизатора.
Дать краткие выводы по работе.
Контрольные вопросы.
1. Что называется варистором? Из каких материалов их изготавливают?
2. Чем обусловлена нелинейность ВАХ варистора?
3. Что такое степень нелинейности и как используя этот параметр можно аппроксимировать ВАХ варистора?
4. Где применяют варисторы и почему?
5. Как устроен и как работает мостовой стабилизатор напряжения на варисторах?
6. Каким параметром оцениваются стабилизирующие свойства стабилизатора напряжения?
7. Как степень нелинейности ВАХ варистора влияет на величину коэффициента стабилизации?
8. Как получить ВАХ варистора на экране осциллографа?
Работа 4. Исследование свойств фоторезисторов
Цель работы – исследование основных характеристик фоторезисторов:
1) определение зависимости величины сопротивления от освещенности;
2) получение вольтамперных характеристик при различных значениях освещенности;
3) определение зависимости фототока от величины освещенности
4) определение интегральной чувствительности.
1. Краткие сведения из теории
Фоторезистором называется полупроводниковый резистор, сопротивление которого изменяется под действием оптического излучения.
Работа некоторых полупроводниковых элементов основана на использовании фотоэлектрического эффекта – явления взаимодействия электромагнитного излучения с веществом, в результате которого энергия фотонов передается электронам вещества. В твердых и жидких полупроводниках различают внешний и внутренний фотоэффекты. В первом случае поглощение фотонов сопровождается вылетом электронов из вещества. Во втором – электроны, оставаясь в веществе, переходят из заполненной энергетической зоны в зону проводимости, обуславливая появление фотопроводимости. В газах фотоэффект состоит в ионизации атомов или молекул под действием излучения. Внутренний фотоэффект, возникающий в паре из электронного и дырочного полупроводников, понижает контактную разность потенциалов, выполняя непосредственное преобразование электромагнитного излучения в энергию электрического поля, что используется в фотодиодах, фототранзисторах. Наиболее ярко внутренний фотоэффект выражен в таких полупроводниковых материалах как селен, германий, кремний, различные селенистые и сернистые соединения таллия, кадмия, свинца и висмута. Из этих материалов изготавливают фотоэлементы и фоторезисторы.
В отсутствие облучения фоторезистор обладает некоторым большим сопротивлением Rт, которое называется темновым. Величина темнового сопротивления определяется температурой и чистотой полупроводника. При приложении к фоторезистору разности потенциалов в цепи возникает ток I =
Iо+ Iф, (4.1) где Iо – темновой ток, Iф – фототок. Зависимость фототока от освещенности
(светового потока) называется световой характеристикой (рис. 4.1).
Фоторезисторы обладают линейной вольтамперной характеристикой, получаемой при неизменной освещенности Е (рис. 4.2).
Основным параметром фоторезисторов является интегральная чувствительность, под которой понимают отношение фототока к вызвавшему его появление световому потоку белого (немонохромного) света и приложенному напряжению:
(4.2)
где S – облучаемая площадь фоторезистора, Gф – фотопроводимость, – световой поток. Интегральная чувствительность выражается в микро- или миллиамперах на вольт-люмен (мкА/В(лм, мА/В(лм). С ростом освещенности величина интегральной чувствительности уменьшается, так как световая характеристика Iф(E) имеет зону насыщения.
Недостатками фоторезисторов являются значительная зависимость сопротивления от температуры, характерная для полупроводников, и большая инерционность, связанная с большим временем рекомбинации электронов и дырок после прекращения облучения. Постоянная времени ( различных типов фоторезисторов колеблется в пределах 4(10-5 …3(10-2 с. Так, для фоторезисторов марок ФС-КО, ФС-К1 ( = 2(10-2 с, для ФС-А1 – ( = 4(10-2 с.
Это ограничивает быстродействие и затрудняет контроль быстрых изменений освещенности в приборах с фоторезисторами (рис.4.3).
2. Описание экспериментальной установки
Фоторезистор (рис. 4.4) состоит из диэлектрической пластины 1, на которую нанесен слой светочувствительного полупроводникового вещества 2. С противоположных сторон этого слоя укреплены электроды 3. Для защиты от механических воздействий фоторезистор запрессовывается в пластмассовую оправу с прозрачным окном, штырьки которой соединены с его электродами.
В лабораторной установке фоторезистор располагается внутри темновой камеры на специальной панели. Рядом размещается фотоэлемент, являющийся датчиком люксметра – прибора, измеряющего освещенность. В противоположном конце камеры на одинаковом расстоянии от фоторезистора и фотоэлемента помещен источн...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2014.12.25
Просмотров: 1018

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434