Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Круговорот веществ в природе - Рефераты по химии - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по химии

Реферат: Круговорот веществ в природе



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
Содержание.
Лист.
1. Биогеохимические круговороты. 3
2. Круговорот веществ в биосфере. 5
3. Круговорот углерода. 6
4. Круговорот кислорода. 9
5. Круговорот азота. 10
6. Круговорот фосфора. 12
7. Круговорот серы. 13
8. Круговорот воды. 16
9. Антропогенные воздействия на окружающую среду. 17
Использованная литература. 19
1. Биогеохимические круговороты.
В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам.
Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.
Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.
Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.
Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа.
Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.
В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы.
Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах – наиболее древних и консервативных).
Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.
Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных ресурсов утилизируется в конечном продукте.
Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.
2. Круговорот веществ в биосфере.
Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес).
Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана – приблизительно за год. Весь углекислый газ атмосферы обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота,
210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). существование этих круговоротов придаёт экосистеме определённую устойчивость.
Различают два основных круговорота: большой (геологический) и малый
(биотический).
Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в
Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.
Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.
Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.
Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.
3. Круговорот углерода.
Самый интенсивный биогеохимический цикл – круговорот углерода. В природе углерод существует в двух основных формах – в карбонатах
(известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и нуклеиновых кислот.
Основная масса аккумулирована в карбонатах на дне океана (1016 т), в кристаллических породах (1016 т), каменном угле и нефти (1016 т) и участвует в большом цикле круговорота.
Основное звено большого круговорота углерода – взаимосвязь процессов фотосинтеза и аэробного дыхания (рис. 1).
Другое звено большого цикла круговорота углерода представляет собой анаэробное дыхание (без доступа кислорода); различные виды анаэробных бактерий преобразуют органические соединения в метан и другие вещества
(например, в болотных экосистемах, на свалках отходов).
В малом цикле круговорота участвует углерод, содержащийся в растительных тканях (около 1011 т) и тканях животных (около 109 т).
Более подробная схема круговорота представлена на рис. 2.
Сжигание и
Тепло Тепло
выветривание
Рис. 1. Круговорот углерода в процессах фотосинтеза и аэробного дыхания.
Растворяется в дождевой воде
Рис. 2. Круговорот углерода.
4. Круговорот кислорода.
В количественном отношении главной составляющей живой материи является кислород, круговорот которого осложнён его способностью вступать в различные химические реакции, главным образом реакции окисления. В результате возникает множество локальных циклов, происходящих между атмосферой, гидросферой и литосферой.
Кислород, содержащийся в атмосфере и в поверхностных минералах
(осадочные кальциты, железные руды), имеет биогенное происхождение и должно рассматриваться как продукт фотосинтеза. Этот процесс противоположен процессу потребления кислорода при дыхании, который сопровождается разрушением органических молекул, взаимодействием кислорода с водородом
(отщеплённым от субстрата) и образованием воды. В некотором отношении круговорот кислорода напоминает обратный круговорот углекислого газа. В основном он происходит между атмосферой и живыми организмами.
Потребление атмосферного кислорода и его возмещение растениями в процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают, что для полного обновления всего атмосферного кислорода требуется около двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды гидросферы были подвергнуты фотолизу и вновь синтезированы живыми организмами, необходимо два миллиона лет. Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в виде газа или сульфатов, растворённых в океанических и континентальных водах, в несколько раз меньше (0,4*1016 т).
Отметим, что, начиная с определённой концентрации, кислород очень токсичен для клеток и тканей (даже у аэробных организмов). А живой анаэробный организм не может выдержать (это было доказано ещё в прошлом веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.
5. Круговорот азота.
Газообразный азот возникает в результате реакции окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов:
4NH3 + 3O2 ( 2N2 + 6H2O.
Круговорот азота – один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то что азот составляет около 80% атмосферного воздуха, в большинстве случаев он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии
– фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.
Самые активные потребители азота – бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее образуются отходы в виде погибших организмов, являющихся объектами жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так возникает новый цикл круговорота. Существуют организмы, способные превращать аммиак в нитриты, нитраты и в газообразный азот. Основные звенья круговорота азота в биосфере представлены схемой на рис. 3.
Биологическая активность организмов дополняется промышленными способами получения азотосодержащих органических и неорганических веществ, многие из которых применяются в качестве удобрений для повышения продуктивности и роста растений.
Антропогенное влияние на круговорот азота определяется следующими процессами:
1. сжигание топлива приводит к образованию оксида азота, а затем реакциям:
2. 2NO + O2 ( 2NO2 ,
3. 4NO2 + 2H2O.+ O2 ( 4HNO3 ,
4. способствуя выпадению кислотных дождей;
Молнии
Денитрифицирующие
Азотфиксирую- бактерии щие бактерии
Сине- зелёные
Бактерии Осадки водоросли
Бактерии
Бактерии
Бактерии
Рис. 3. Круговорот азота.
5. в результате воздействия некоторых бактерий на удобрения и отходы животноводства образуется закись азота – один из компонентов, создающих парниковый эффект;
6. добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония, для производства минеральных удобрений;
7. при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;
8. стоки с полей, ферм и из канализаций увеличивают количество нитрат- ионов и ионов аммония в водных экосистемах, что ускоряет рост водорослей и других растений; при разложении последних расходуется кислород, что в конечном счёте приводит к гибели рыб.
6. Круговорот фосфора.
Фосфор – один из основных компонентов (главным образом в виде и
) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК), клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ), жиров, костей и зубов. Круговорот фосфора, как и других биогенных элементов, совершается по большому и малому циклам.
Запасы фосфора, доступные живым существам, полностью сосредоточены в литосфере. Основные источники неорганического фосфора – изверженные или осадочные породы. В земной коре содержание фосфора не превышает 1%, что лимитирует продуктивность экосистем. Из пород земной коры неорганический фосфор вовлекается в циркуляцию континентальными водами. Он поглощается растениями, которые при его участии синтезируют различные органические соединения и таким образом включаются в трофические цепи. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где снова подвергаются воздействию микроорганизмов и превращаются в минеральные формы, употребляемые зелёными растениями.
В экосистеме океана фосфор приносится текучими водами, что способствует развитию фитопланктона и живых организмов.
В наземных системах круговорот фосфора проходит в оптимальных естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это связано с постоянным оседанием (седиментацией) органических веществ.
Осевший на небольшой глубине органический фосфор возвращается в круговорот.
Фосфаты, отложенные на больших морских глубинах не участвуют в малом круговороте. Однако тектонические движения способствуют подъёму осадочных пород к поверхности.
Таким образом фосфор медленно перемещается из фосфатных месторождений на суше и мелководных океанических осадков к живым организмам и обратно
(рис. 4).
Рассматривая круговорот фосфора в масштабе биосферы за сравнительно короткий период, можно сделать вывод, что он полностью не замкнут. Запасы фосфора на земле малы. Поэтому считают, что фосфор – основной фактор, лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор – главный регулятор всех других биогеохимических циклов, это – наиболее слабое звено в жизненной цепи, которая обеспечивает существование человека.
Антропогенное влияние на круговорот фосфора состоит в следующем:
1. добыча больших количеств фосфатных руд для минеральных удобрений и моющих средств приводит к уменьшению количества фосфора в биотическом круговороте;
2. стоки с поле, ферм и коммунальные отходы приводят к увеличению фосфат-ионов в водоёмах, к резкому росту водных растений и нарушению равновесия в водных экосистемах.
7. Круговорот серы.
Из природных источников сера попадает в атмосферу в виде сероводорода, диоксида серы и частиц сульфатных солей (рис. 5).
Около одной трети соединений серы и 99% диоксида серы – антропогенного происхождения. В атмосфере протекают реакции, приводящие к кислотным осадкам:
2SO2 + O2 ( 2SO3 ,
SO3 + H2O ( H2SO4 .
Разработка
Кости и зубы
недр
Выщела-
Сток и чивание
эрозия
Отходы
Выщелачивание
и эрозия
Разложение Отходы и
разложение
Птицы, питающиеся рыбой
Кости и зубы
Выпадение из
круговорота
Рис. 4. Круговорот фосфора.
+ O2
Атмосфера
+ Н2О
+ NH3
*
*
**
**
Рис. 5. Круговорот серы.
8. Круговорот воды.
Вода, как и воздух, - основной компонент, необходимый для жизни. В количественном отношении это самая распространённая неорганическая составляющая живой материи. Семена растений, в которых со...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 1675

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434