Главная / Рефераты / Рефераты по информатике, программированию

Реферат: Основы алгоритмического языка С++


Основы алгоритмического языка С++ Переменные и операции языка С++ Здесь представлены базовые компоненты программ на С++. В их число входят типы данных, переменные, константы и выражения. ИЗУЧАЕМЫЕ ПОНЯТИЯ - Предопределенные типы данных в С++ включают в себя типы int, char, float, double и void. В языке С++ гибкость типов данных увеличивается благодаря применению модификаторов типов. Эти модификаторы изменяют точность представления и диапазон значений переменных. Модификаторами типа являются signed, unsigned, short и long. - Идентификаторы в С++ могут иметь длину до 32 символов и должны начинаться с буквы или подчеркивания. Последующие символы идентификатора могут быть буквой, цифрой или подчеркиванием. Идентификаторы С++ чувствительны к регистру. Ограничение на 32 символа может быть, однако, изменено путем установки опций компилятора. - Директива #include является специальной командой компилятора. Она предписывает компилятору включить в программу содержимое определенного файла, как если бы вы сами ввели его в текущий исходный файл. - Объявление констант предусматривает использование директивы #define для объявления констант, определенных при помощи макросов, или использование ключевого слова const для объявления формальных констант. Формальные константы требуют от вас определения их типа (значением по умолчанию является int), имени и ассоциированного с ними значения. - Объявление переменной требует, чтобы вы задали ее тип и имя, С++ дает вам возможность инициализировать переменную при ее объявлении. Вы можете объявить несколько переменных в одном операторе объявления. - Арифметическими операциями являются +, -, *, / и % (деление по модулю). - Арифметические выражения различаются по сложности. Самое простое выражение содержит единственный элемент данных (литерал, константу или переменную). Сложные выражения включают набор операций, функции, литералы, константы и переменные. - Операции инкремента и декремента используются в префиксной и постфиксной формах. Язык С++ дает вам возможность применять эти операции к переменным, в которых хранятся символы, целые числа и даже числа с плавающей точкой. - Арифметические операции присваивания дают вам возможность записывать более короткие арифметические выражения, в которых первый операнд является также переменной, принимающей результат вычислений. - Оператор sizeof возвращает как для типов данных, так и для переменных их размер в байтах. - Механизм приведения типа дает вам возможность форсировать преобразование типа выражения. - Операции отношений и логические операции дают вам возможность строить логические выражения. - Булевы выражения объединяют операции отношений и логические операции для формулирования нетривиальных условий. Эти выражения позволяют программе принимать сложные решения. - Условное выражение предлагает вам короткую форму для простого оператора if-else с двумя альтернативами. - Операции манипулирования битами выполняют поразрядные операции AND, OR, XOR и NOT. Кроме того, в С++ поддерживаются поразрядные операции сдвига << и >>. - Операции манипулирования битами с присваиванием предлагают короткие формы для простых операций манипулирования битами. Буквы и цифры Множество символов Си включает большие и малые буквы из английского алфавита и 10 десятичных арабских цифр: -большие английские буквы: A B C D E F G H I J K L M N O P Q R T U V W X Y Z -малые английские буквы: a b c d e f g h i j k l m n o p q r t u v w x y z -десятичные цифры: 0 1 2 3 4 5 6 7 8 9 Буквы и цифры используются при формировании констант, идентификаторов и ключевых слов. Все эти конструкции описаны ниже. Компилятор Си рассматривает одну и ту же малую и большую буквы как отличные символы. Если в данной записи использованы малые буквы, то замена малой буквы "a" на большую букву "A" сделает отличной данную запись от предшествующей. Пробельные символы Пробел, табуляция, перевод строки, возврат каретки, новая страница, вертикальная табуляция и новая строка- это сиволы, называемые пробельными, поскольку они имеют то же самое назначение, как и пробелы между словами и строками на печатной странице. Эти символы разделяют объекты, определенные пользователем, такие, как константы и идентификаторы, от других объектов программы. Символ CONTROL-Z рассматривается как индикатор конца файла. Компилятор игнорирует любой текст, следующий за символом CONTROL-Z. Компилятор Си игнорирует пробельные символы, если они не используются как разделители или как компоненты константы-символа или строковых литералов. Это нужно иметь в виду, чтобы дополнительно использовать пробельные символы для повышения наглядности программы (например,для просмотра редактором текстов). Знаки пунктуации и специальные символы Эти символы имеют специальный смысл для компилятора Си. Их использование в языке Си описывается в дальнейшем содержании руководства. Знаки пунктуации из множества представимых символов, которые не представлены в данном списке, могут быть использованы только в строковых литералах, константах-символах и комментариях. ESC- последовательности ESC- последовательности- это специальные символьные комбинации, которые представляют пробельные символы и неграфические символы в строках и символьных константах. Их типичное использование связано со спецификацией таких действий, как возврат каретки и табуляция , а также для задания литеральных представлений символов, таких как символ двойная кавычка. ESC-последовательность состоит из наклонной черты влево, за которой следует буква, знаки пунктуации * " или комбинация цифр. В таблице 2.2. приведен список ESC- последовательностей языка Си. Если наклонная черта влево предшествует символу, не включенному в этот список, то наклонная черта влево игнорируется, а символ представляется как литеральный. Например, изображение c представляет символ "c" в литеральной строке или константе-символе. Последовательности ddd и xdd позволяют задать любой символ в ASCII (Американский стандартный код информационного интерфейса) как последовательность трех восьмеричных цифр или двух шестнадцатеричных цифр. Например, символ пробела может быть задан как ыть задан как 10 . Точно так же в шестнадцатеричной ESC- последовательности могут быть использованы от одной до двух шестнадцатеричных цифр. Так, шестнадцатеричная последовательность для символа пробела может быть задана как x08 или x8 . Замечание: Когда используется восьмеричная или шестнадцатеричная ESCпоследовательность в строках, то нужно полностью задавать все цифры ESC- последовательности (три цифры для восьмеричной и две цифры для шестнадцатеричной ESC- последовательностей). Иначе, если символ непосредственно следующий за ESC- последовательностью, случайно окажется восьмеричной или шестнадцатеричной цифрой, то он проинтерпретируется как часть последовательности. Например, строка x7Bell при выводе на печать будет выглядеть как {ell , поскольку x7B проинтерпретируется как символ левой фигурной скобки({) . Строка x07Bell будет правильным представлением символа "звонок" с последующим словом Bell. ESC- последовательности позволяют посылать неграфические управляющие символы к внешним устройствам. Например, ESC- последовательностьn>:<expression> Константы Константа- это число, символ или строка символов. Константы используются в программе как неизменяемые величины. В языке Си различают четыре типа констант: целые константы, константы с плавающей точкой, константы-символы и строчные литералы. Целые константы Целая константа- это десятичное, восьмеричное или шестнадцатеричное число, которое представляет целую величину. Десятичная константа имеет следующий формат представления: <digits>, где <digits> - это одна или более десятичных цифр от 0 до 9. Восьмеричная константа имеет следующий формат представления: 0<odigits>, где <odigits> - это одна или более восьмеричных цифр от 0 до 7. Запись ведущего нуля необходима. Шестнадцатеричная константа имеет один из следующих форматов представления: 0x<hdigits> 0X<hdigits>, где <hdigits> одна или более шестнадцатеричных цифр. Шестнадцатеричная цифра может быть цифрой от 0 до 9 или буквой (большой или малой) от A до F. В представлении константы допускается "смесь" больших и малых букв. Запись ведущего нуля и следующего за ним символа x или X необходима. Пробельные символы не допускаются между цифрами целой константы. В Табл. 2.4 иллюстрируются примеры целых констант. Целые константы всегда специфицируют положительные величины. Если требуется отрицательные величины, то необходимо сформировать константное выражение из знака минус и следующей за ним константы. Знак минус рассматривается как арифметическая операция. Каждая целая константа специфицируется типом, определяющим ее представление в памяти и область значений. Десятичные константы могут быть типа int или long. Восьмеричные и шестнадцатеричные константы в зависимости от размера могут быть типа int, unsigned int, long или unsigned long. Если константа может быть представлена как int, она специфицируется типом int. Если ее величина больше, чем максимальная положительная величина, которая может быть представлена типом int, но меньше величины, которая представляется в том же самом числе бит как и int, она задается типом unsigned int. Наконец, константа, величина которой больше чем максимальная величина, представляемая типом unsigned int, задется типом long или unsigned long, если это необходимо. Важность рассмотренных выше правил состоит в том, что восьмеричные и шестнадцатеричные константы не содержат "знаковых" расширений, когда они преобразуются к более длинным типам (преобразование типов смотри в разделе 5 "Выражения и присваивания"). Программист может определить для любой целой константы тип long, приписав букву "l" или "L" в конец константы. В Табл. 2.6 показаны примеры целых констант. Константы с плавающей точкой Константа с плавающей точкой- это действительное десятичное положительное число. Величина действительного числа включает целую, дробную части и экспоненту. Константы с плавающей точкой имеют следующий формат представления: [<digits>][.<digits>][E[-]<digits>], где <digits> - одна или более десятичных цифр (от 0 до 9), а E или e -символ экспоненты. Целая или дробная части константы могут быть опушены, но не обе сразу. Десятичная точка может быть опущена только тогда, когда задана экспонента. Экспонента состоит из символа экспоненты, за которым следует целочисленная величина экспоненты, возможно отрицательная. Пробельные символы не могут разделять цифры или символы константы. Константы с плавающей точкой всегда специфицируют положительные величины. Если требуются отрицательные величины, то необходимо сформировать константное выражение из знака минус и следующей за ним константы. Знак минус рассматривается как арифметическая операция. Примеры констант с плавающей точкой и константных выражений: 15.75 1.575E1 1575e-2 -0.0025 -2.5e-3 25e-4 Целая часть константы с плавающей точкой может быть опущена, например: .75 .0075e2 -.125 -.175E-2 Все константы с плавающей точкой имеют тип double. Константа-символ Константа-символ- это буква, цифра, знак пунктуации или ESC- символ, заключенные в одиночные кавычки. Величина константы-символа равна значению представляющего ее кода символа. Константа-символ имеет следующую форму представления: *<char>*, где <char> может быть любым символом иэ множества представимых символов, включая любой ESC- символ, исключая одиночную кавычку (*), наклонную черту влево () и символ новой строки. Чтобы использовать одиночную кавычку или наклонную черту влево в качестве константы-символа, необходимо вставить перед этими знаками наклонную черту влево. Чтобы представить символ новой строки, необходимо использовать запись *n*. Константы-символы имеют тип int. Строковые литералы Строковый литерал- это последовательность букв, цифр и символов, заключенная в двойные кавычки. Строковый литерал рассматривается как массив символов, каждый элемент которого представляет отдельный символ. Строковый литерал имеет следующую форму представления: "<characters>" , где <characters> - это нуль или более символов из множества представимых символов, исключая двойную кавычку ("), наклонную черту влево () и символ новой строки. Чтобы использовать символ новой строки в строковом литерале, необходимо напечатать наклонную черту влево, а затем символ новой строки. Наклонная черта влево вместе с символом новой строки будут проигнорированы компилятором , что позволяет формировать строковые литералы, располагаемые более чем в одной строке. Например, строковый литерал: "Long strings can be bro cken into two pieces." идентичен строке: "Long strings can be brocken into two pieces." Чтобы использовать двойные кавычки или наклонную черту влево внутри строкового литерала, нужно представить их с предшествующей наклонной чертой влево, как показано в следующем примере: "This is a string literal" "First Second" ""Yes, I do," she said." "The following line shows a null string:" "" Заметим, что ESC- символы (такие как и ") могут появляться в строковых литералах. Каждый ESC- символ считается одним отдельным символом. Символы строки запоминаются в отдельных байтах памяти. Символ null (авнению с компилятором, сборщик может в большей степени ограничивать количество и тип символов для глобальных идентификаторов, и в отличие от компилятора не делать различия между большими и малыми буквами. (Подробнее смотри руководство по пакету MSC). Ключевые слова Ключевые слова- это предопределенные идентификаторы, которые имеют специальное значение для компилятора Си. Их можно использовать только так как они определены. Имена объектов программы не могут совпадать с названиями ключевых слов. Список ключевых слов: auto double int struct break else long switch case enum register typedef char extern return union const float short unsigned continue for signed void default goto sizeof while do if static volatile Ключевые слова не могут быть переопределены. Тем не менее, они могут быть названы другим текстом, но тогда перед компиляцией они должны быть заменены посредством препроцессора на соответствующие ключевые слова. Ключевые слова const и volatile зарезервированы для будущего использования. Следующие идентификаторы могут быть ключевыми словами для некоторых приложений: cdecl far fortran huge near pascal Комментарии Комментарий- это последовательность символов, которая воспринимается компилятором как отдельный пробельный символ или, другими словами, игнорируется. Комментарий имеет следующую форму представления: /*<characters>*/, где <characters> может быть любой комбинацией символов из множества представимых символов, включая символы новой строки, но исключая комбинацию */. Это означает, что комментарии могут занимать более одной строки, но не могут быть вложенными. Комментарии допускаются везде, где разрешены пробельные символы. Компилятор игнорирует символы комментария, в частности, в комментариях допускается запись ключевых слов и зто не приведет к ошибке. Так как компилятор рассматривает комментарий как символ пробела, то комментарии не могут появляться внутри лексем. Следующие примеры иллюстрируют некоторые комментарии: /* Comments can separate and document lines of a program. */ /* Comments can contain keywords such as for and while */ /*** Comments can occupy several lines. ***/ Так как комментарии не могут содержать вложенных комментариев, то следующий пример будет ошибочным: /* You cannot/* nest */ comments */ Компилятор распознает первую комбинацию */ после слова nest как конец комментария. Затем, компилятор попытается обрабатывать оставшийся текст и выработает сообщение об ошибке. Чтобы обойти компиляцию комментариев больших размеров, нужно использовать директиву #if препроцессора. Лексемы Когда компилятор обрабатывает программу, он разбивает программу на группы символов, называемых лексемами. Лексема- это единица текста программы, которая имеет определенный смысл для компилятора и которая не может быть разбита в дальнейшем. Операции, константы, идентификаторы и ключевые слова, описанные в этом разделе,являются примерами лексем. Знаки пунктуации, такие как квадратные скобки ([]), фигурные скобки ({}), угловые скобки (<>), круглые скобки и запятые, также являются лексемами. Границы лексем определяются пробельными символами и другими лексемами, такими как операции и знаки пунктуации. Чтобы предупредить неправильную работу компилятора, запрещаются пробельные символы между символами идентификаторов, операциями, состоящими из нескольких символов и символами ключевых слов. Когда компилятор выделяет отдельную лексему, он последовательно объединяет столько символов, сколько возможно, прежде чем перейти к обработке следующей лексемы. Поэтому лексемы, не разделенные пробельными символами, могут быть проинтерпретированы неверно. Например, рассмотрим следующее выражение: ij В этом примере компилятор вначале создает из трех знаков плюс самую длинную из возможных операций (++), а затем обработает оставшийся знак +, как операцию сложения (+). Выражение проинтерпретируется как (i++)+(j), а не как (i)+(++j). В таких случаях необходимо использовать пробельные символы или круглые скобки, чтобы однозначно определить ситуацию. ИСХОДНЫЕ ТЕКСТЫ ПРИМЕРОВ // Программа VAR.CPP, иллюстрирующая простые переменные #include <iostream.h> int main() { int i, j = 2; double x, y = 355.0 / 113; i = 3 * j; cout << "i = " << i << endl << "j = " << j << endl; x = 2 * y; x = x * x; cout << "y = " << y << endl << "x = " << x << endl; return 0; } /* Результаты: i = 6 j = 2 y = 3.141593 x = 39.4784 */ // Программа CONST1.CPP, иллюстрирующая константы #include <iostream.h> #define SEC_IN_MIN 60 #define MIN_IN_HOUR 60 int main() { long hours, minutes, seconds; long totalSec; cout << "Введите часы: "; cin >> hours; cout << "Введите минуты: "; cin >> minutes; cout << "Введите секунды: "; cin >> seconds; totalSec = ((hours * MIN_IN_HOUR + minutes) * SEC_IN_MIN) + seconds; cout << endl << totalSec << " секунд прошло с полуночи" << endl; return 0; } /* Тест и результаты: Введите часы: 10 Введите минуты: 0 Введите секунды: 0 36000 секунд прошло сполуночи */ // Программа CONST2.CPP, иллюстрирующая формальные константы #include <iostream.h> const int SEC_IN_MIN = 60; // глобальная константа int main() { const int MIN_IN_HOUR = 60; // локальная константа long hours, minutes, seconds; long totalSec; cout << "Введите часы: "; cin >> hours; cout << "Введите минуты: "; cin >> minutes; cout << "Введите секунды: "; cin >> seconds; totalSec = ((hours * MIN_IN_HOUR + minutes) * SEC_IN_MIN) + seconds; cout << endl << endl << totalSec << " секунд прошло с полуночи" << endl; return 0; } /* Тест и результаты: Введите часы: 1 Введите минуты: 10 Введите секунды: 20 4220 секунд прошло с полуночи */ // Программа OPER1.CPP, иллюстрирующая простые математические операции #include <iostream.h> int main() { int int1, int2; long long1, long2, long3, long4, long5; float x, y, real1, real2, real3, real4; cout << endl << "Введите первое целое число: "; cin >> int1; cout << "Введите второе целое число: "; cin >> int2; cout << endl; long1 = int1 + int2; long2 = int1 - int2; long3 = int1 * int2; long4 = int1 / int2; long5 = int1 % int2; cout << int1 << " + " << int2 << " = " << long1 << endl; cout << int1 << " - " << int2 << " = " << long2 << endl; cout << int1 << " * " << int2 << " = " << long3 << endl; cout << int1 << " / " << int2 << " = " << long4 << endl; cout << int1 << " % " << int2 << " = " << long5 << endl; cout << endl << endl; cout << "Веедите первое вещественное число: "; cin >> x; cout << "Введите второе вещественное число: "; cin >> y; cout << endl; real1 = x + y; real2 = x - y; real3 = x * y; real4 = x / y; cout << x << " + " << y << " = " << real1 << endl; cout << x << " - " << y << " = " << real2 << endl; cout << x << " * " << y << " = " << real3 << endl; cout << x << " / " << y << " = " << real4 << endl; cout << endl << endl; return 0; } /* Тест и результаты: Введите первое целое число: 10 Введите второе целое число: 5 10 + 5 = 15 10 - 5 = 5 10 * 5 = 50 10 / 5 = 2 10 % 5 = 0   Введите первое вещественное число: 1.25 Введите второе вещественное число: 2.58 1.25 + 2.58 = 3.83 1.25 - 2.58 = -1.33 1.25 * 2.58 = 3.225 1.25 / 2.58 = 0.484496 */ //Демонстрация операций инкремента и декремента см. в программе OPER2.CPP // Программа SIZEOF.CPP, которая возвращает размеры данных, используя // для этого операцию sizeof() с переменными и типами данных. #include <iostream.h> int main() { short int aShort; int anInt; long aLong; char aChar; float aReal; cout << "Таблица 1. Размеры памяти для переменных" << endl << endl; cout << " Тип данных Используемая " << endl; cout << " память (в байтах)" << endl; cout << " --" << endl; cout << " short int " << sizeof(aShort) << endl; cout << " integer " << sizeof(anInt) << endl; cout << " long integer " << sizeof(aLong) << endl; cout << " character " << sizeof(aChar) << endl; cout << " float " << sizeof(aReal) << endl; cout << endl << endl << endl; cout << "Таблица 2. Размеры памяти для типов данных" << endl << endl; cout << " Тип данных Используемая" << endl; cout << " память (в байтах)" << endl; cout << " --" << endl; cout << " short int " << sizeof(short int) << endl; cout << " integer " << sizeof(int) << endl; cout << " long integer " << sizeof(long) << endl; cout << " character " << sizeof(char) << endl; cout << " float " << sizeof(float) << endl; cout << endl << endl << endl; return 0; }   /* Результаты: Таблица 1. Размеры памяти для переменных" Тип данных Используемая память (в байтах) short int 2 integer 2 long integer 4 character 1 float 4 Таблица 2. Размеры памяти для типов данных Тип данных Используемая память (в байтах) - short int 2 integer 2 long integer 4 character 1 float 4 */ // Простая программа TYPECAST.CPP, демонстрирующая приведение типа #include <iostream.h> int main() { short shortInt1, shortInt2; unsigned short aByte; int anInt; long aLong; char aChar; float aReal; // присваиваются значения shortInt1 = 10; shortInt2 = 6; // действия выполняются без приведения типа aByte = shortInt1 + shortInt2; anInt = shortInt1 - shortInt2; aLong = shortInt1 * shortInt2; aChar = aLong + 5; // автоматическое преобразование // в символьный тип aReal = shortInt1 * shortInt2 + 0.5; cout << "shortInt1 = " << shortInt1 << endl << "shortInt2 = " << shortInt2 << endl << "aByte = " << aByte << endl << "anInt = " << anInt << endl << "aLong = " << aLong << endl << "aChar is " << aChar << endl << "aReal = " << aReal << endl << endl << endl; // дейтсвия выполняются с приведением типа aByte = (unsigned short) (shortInt1 + shortInt2); anInt = (int) (shortInt1 - shortInt2); aLong = (long) (shortInt1 * shortInt2); aChar = (unsigned char) (aLong + 5); aReal = (float) (shortInt1 * shortInt2 + 0.5); cout << "shortInt1 = " << shortInt1 << endl << "shortInt2 = " << shortInt2 << endl << "aByte = " << aByte << endl << "anInt = " << anInt << endl << "aLong = " << aLong << endl << "aChar is " << aChar << endl << "aReal = " << aReal << endl << endl << endl; return 0; } /* Результаты: shortInt1 = 10 shortInt2 = 6 aByte = 16 anInt = 4 aLong = 60 aChar is A aReal = 60.5 shortInt1 = 10 shortInt2 = 6 aByte = 16 anInt = 4 aLong = 60 aChar is A aReal = 60.5 */ /* *** ВОПРОСЫ И ОТВЕТЫ *** Существуют ли особые соглашения о присвоении имен идентификаторам? Существует несколько стилей, которые стали популярными в последние годы. Стиль, который используется в наших занятиях, требует начинать имя переменной с символа, набранного в нижнем регистре. Если идентификатор состоит из нескольких слов, как, например, numberOfElements, набирайте первый символ каждого последующего слова в верхнем регистре. Как реагирует компилятор, если вы объявляете переменную, но никогда не присваиваете ей значения? Компилятор выдает предупреждение, что на переменную нет ссылок. Каково булево выражение для проверки того, что значение переменной i находится в заданном диапазоне значений (например, определяемом переменными lowVal и hiVal)? Выражением, которое определяет, находится ли значение переменной i в некотором диапазоне, является (i >= lowVal && i <= hiVal). Конструкции принятия решений и циклы ВОПРОСЫ И ОТВЕТЫ Предъявляет ли С++ какие-либо требования на отступ операторов в предложениях оператора? Нет. Отступ определяется только Вами. Типовые размеры отступа составляют два или четыре пробела. Использование отступов делает ваш листинг намного более удобочитаемым. Вот пример оператора if с записью предложений без отступа: if ( i > 0 ) j = i * 1; else j = 10 - i; Сравните этот листинг и его вариант с отступами if ( i > 0 ) j = i * i; else j = 10 - i; Последний вариант читается много легче; легко указать, где операторы if и else. Более того, если вы будете работать с вложенными циклами, отступы еще более значимы в отношении удобочитаемости кода. Каковы правила написания условий в операторе if-else? Здесь существуют два подхода. Первый рекомендует писать условия так, что true будет чаще, чем false. Второй подход рекомендует избегать отрицательных выражений (тех, которые используют операции сравнения != и булевы операции !). Программисты из последнего лагеря преобразуют такой оператор if: if ( i != 0 ) j = 100/i; else j = 1; в следующую эквивалентную форму: if ( i == 0 ) j = 1; else j = 100/i; хотя вероятность равенства нулю переменной i достаточно низка. Как обработать условие, подобное нижеследующему, где имеется деление на переменную, которая может оказаться равной нулю? if ( i != 0 && 1/i > 1 ) j = i * i; С++ не всегда оценивает проверяемые условия полностью. Эта частичная оценка происходит, когда член булева выражения превращает все выражение в false или true, независимо от значения других членов. В этом случае, если переменная i равна 0, исполняющая система не будет оценивать 1/i > 1, потому что член i != 0 есть false и обращает в false все выражение, независимо от значения второго члена. Это называется укороченной оценкой булевых выражений. Действительно ли необходимо включать предложения else или default в многоальтернативные операторы if-else и switch? Программисты настоятельно рекомендуют включение этих всеохватывающих предложений для гарантии того, что многоальтернативные операторы будут обрабатывать все возможные условия. Однако технически для компиляции программы это не является необходимым. Как смоделировать цикл while циклом for? Рассмотрим простой пример. int i; int i = 1; for (i=1; i<=10; i+=2) { while ( i <= 10) { cout << i << endl; cout << i << endl; } i += 2; } Циклу while необходим начальный оператор, инициирующий переменную управления циклом. Заметим также, что внутри цикла while находится оператор, изменяющий значение переменной управления циклом. Как смоделировать цикл while циклом do-while? Рассмотрим простой пример. i = 1; i = 1; do { while (i <= 10) { cout << i << endl; cout << i << endl; i += 2; i += 2; } while (i <= 10); } Оба цикла имеют одинаковые условия в предложениях while. Заметим, однако, что если цикл спроектирован таким образом, что начальное значение i может быть неизвестным заранее, то это может привести к различным эффектам. Например, если i исходно равно 11, то цикл слева выполнится один раз, тогда как цикл справа не сделает ни одной итерации. Как открытый цикл for может эмулировать циклы while и do-while? Открытый цикл for эмулирует другие циклы С++ установкой оператора if выхода из цикла в начале или конце цикла. Рассмотрим пример эмуляции цикла while открытым циклом for: i = 1; i = 1; while (i <= 10) { for (;;) { if (i > 10) break; cout << i << endl; cout << i << endl; i += 2; i += 2; } } Заметим, что открытый цикл for использует оператор if выхода из цикла как первый оператор внутри цикла. Условие, проверяемое оператором if, есть логическое обращение условия цикла while. Рассмотрим простой пример, иллюстрирующий эмуляцию цикла do-while: i = 1; i = 1; do { for (;;) { cout << i << endl; cout << i << endl; if (i > 10) break; i += 2; i += 2; } while (i <= 10) } Открытый цикл for использует оператор if выхода из цикла перед концом цикла. Оператор if проверяет обратное логическое условие, так же как в цикле do-while. Однако имейте, пожалуйста, в виду, что приведенные примеры довольно грубы и неэлегантны. Никто никогда не будет использовать открытый оператор for подобным образом. Конечно, можно было бы пропустить одно из трех предложений внутри скобок цикла for (например, предложение инициализации, если управляющая переменная уже инициализирована). Открытые циклы for чаще всего используются в случаях, когда выход из цикла бывает редким событием, например, если при обработке данных, вводимых пользователем с клавиатуры, нажатие клавиши Esc должно приводить к выходу из программы. Можно ли во вложенном цикле for использовать переменную управления внешним циклом в качестве границы диапазона значений для внутренних циклов? Да. С++ не только не запрещает такое использование, на самом деле оно в порядке вещей. Рассмотрим простой пример. for ( int i = 1; i <= 100; i += 5) for ( int j = i; i <= 100; j++) cout < i * j << endl; Ограничивает ли С++ вложение циклов разных типов? Нет. В программе на С++ вы можете вкладывать любые комбинации циклов. СТРУКТУРА ПРОГРАММЫ В этом разделе описывается структура исходной программы на Си и определяются термины, используемые в последующих разделах руководства при описании языка. По сути, здесь представлен общий обзор особенностей языка Си, которые в дальнейшем рассмотрены в деталях. Исходная программа Исходная программа- это совокупность следующих объектов: директив, указаний компилятору, объявлений и определений. Директивы задают действия препроцессора по преобразованию текста программы перед компиляцией. Указания компилятору- это команды, выполняемые компилятором во время процесса компиляции. Объявления задают имена и атрибуты переменных, функций и типов, используемых в программе. Определения- это объявления, определяющие переменные и функции. Определение переменной в дополнении к ее имени и типу задает начальное значение объявленной переменной. Кроме того, определение предполагает распределение памяти для переменной. Определение функции специфицирует ее структуру, которая представляет собой смесь из объявлений и операторов, которые образуют саму функцию. Определение функции также задает имя функции, ее формальные параметры и тип возвращаемой величины. Исходная программа может содержать любое число директив, указаний компилятору, объявлений и определений. Любой из объектов программы имеет определенный синтаксис, описанный в этом руководстве,и каждая составляющая может появляться в любом порядке, хотя влияние порядка, в котором следуют переменные и функции может быть использовано в программе (см. раздел 3.5 "Время жизни и видимость"). Нетривиальная программа всегда содержит более одного определения функции. Функция определяет действия, выполняемые программой. В следующем примере иллюстрируется простая исходная программа на языке Си. int x = 1;/* Variable definitions */ int y = 2; extern int printf(char *,...);/* Function declaration */ main () /* Function definition for main function */ { int z; /* Variable declarations */ int w; z = y + x; /* Executable statements */ w = y - x; printf("z = %d nw = %d n", z, x); } Эта исходная программа определяет функцию с именем main и объявляет функцию printf. Переменные x и y задаются своими определениями. Переменные z и w только объявляются. ОБЪЯВЛЕНИЯ В этом разделе описываются форматы и составные части объявлений переменных, функций и типов. Объявления Си имеют следующий синтаксис: [<sc-specifier>][<type-specifier>]<declarator>[=<initializer>] [,<declarator>[=<initializer>...], где: <sc-specifier>- спецификатор класса памяти; <type-specifier>- имя определяемого типа; <declarator>- идентификатор, который может быть модифицирован при объявлении указателя, массива или функции; <initializer>- задает значение или последовательность значений, присваиваемых переменной при объявлении. Все переменные Си должны быть явно объявлены перед их использованием. Функции Си могут быть объявлены явно или неявно в случае их вызова перед определением. Язык Си определяет стандартное множество типов данных. К этому множеству можно добавлять новые типы данных посредством их объявлений на типах данных уже определенных. Объявление Си требует одного или более деклараторов. Декларатор- это идентификатор, который может быть определен с квадратными скобками ([]), эвездочкой (*) или круглыми скобками () для объявления массива, указателя или функции. Когда об*является простая переменная (такая как символ, целое или плавающее), структура или совмещение простых переменных, то декларатор- это идентификатор. В Си определено четыре спецификатора класса памяти, а именно: auto, extern, register и static. Спецификатор класса памяти определяет, каким образом объявляемый объект запоминается и инициализируется и из каких частей программы можно ссылаться на него. Расположение объявления внутри программы, а также наличие или отсутствие других объявлений- также важные факторы при определении видимости переменных. Объявления функций описаны в разделе 4.4. Спецификаторы типов Перечислимые типы также рассматриваются как основные типы. Спецификаторы перечислимых типов рассмотрены в разделе 4.7.1. Типы signed char, signed int, signed short int и signed long int вместе с соответствующими двойниками unsigned называются типами целых. Спецификаторы типов float и double относятся к типу "плавающих". В объявлениях переменых и функций можно использовать любые спецификаторы "целый" и "плавающий". Тип void может быть использован только для объявления функций, которые не возвращают значения. Типы функций рассмотрены в разделе 4.4. Можно задать дополнительные спецификаторы типа путем объявления typedef, описанного в разделе 4.7.2. При записи спецификаторов типов допустимы сокращения как показано в табл. 4.2. В целых типах ключевое слово signed может быть опущено. Так, если ключевое слово unsigned опускается в записи спецификатора типа, то тип целого будет знаковым, даже если опущено ключевое слово signed. В некоторых реализациях могут быть использованы опции компилятора, позволяющие изменить умолчание для типа char со знакового на беззнаковый. Когда задана такая опция, сокращение char имеет то же самое значение, что и unsigned char, и следовательно ключевое слово sidned должно быть записано при объявлении символьной величины со знаком. signed int signed, int signed short int short, signed short signed long int long, signed long unsigned char unsigned int unsigned unsigned short int unsignet short unsignet long int unsignet long float long float double Замечание: в этом руководстве в основном используются сокращенные формы, перечисленные в Табл. 4.2, при этом предполагается, что char по умолчанию знаковый. В табл. 4.3 для каждого типа приведены: размер распределяемой памяти и области значений переменных для данного типа. Поскольку тип void не представляет переменных, он не включен в эту таблицу. int зависит от реализации short 2 байта -32768 до 32767 long 4 байта -2.147.483.648 до 2.147.483.647 unsigned char 1 байт 0 до 255 unsigned зависит от реализации unsigned short 2 байта 0 до 65535 unsigned long 4 байта 0 до 4.294.967.295 float 4 байта IEEE стандартное соглашение double 8 байт IEEE стандартное соглашение Тип char используется для запоминания буквы, цифры или символа из множества представимых символов. Значением объекта типа char является ASCII код, соответствующий данному символу. Так как тип char интерпретируется как однобайтовая целая величина с областью значений от -128 до 127, то только величины от 0 до 127 имеют символьные эквиваленты. Аналогично, тип unsigned char может запоминать величины с областью значений от 0 до 255. Заметим, что представление в памяти и область значений для типов int и unsigned int не определены в языке Си. По умолчанию размер int (со знаком и без знака) соответствует реальному размеру целого на данной машине. Например, на 16-ти разрядной машине тип int всегда 16 разрядов или 2 байта. На 32-ух разрядной машине тип int всегда 32 разряда или 4 байта. Таким образом, тип int эквивалентен типам short int или long int в зависимости от реализации. Аналогично, тип unsigned int эквивалентен типам unsigned short или unsigned long. Спецификаторы типов int и unsigned int широко используются в программах на Си, поскольку они позволяют наиболее эффективно манипулировать целыми величинами на данной машине. Однако, размер типов int и unsigned int переменный, поэтому программы, зависящие от специфики размера int и unsigned int могут быть непереносимы. Переносимость кода можно улучшить путем включения выражений с sizeof операцией. Деклараторы Синтаксис: <identifier> <declarator>[] <declarator>[constant-expression>] *<declarator> <declarator>() <declarator>(<arg-type-list>) (<declarator>) Си позволяет объявлять: массивы величин, указатели на величины, величины возвратов функций. Чтобы объявить эти объекты, нужно использовать декларатор, возможно модифицированный квадратными скобками ([]), круглыми скобками () и звездочкой (*), что соответствует типам массива, функции или указателя. Деклараторы появляются в объявлениях указателей, массивов и функций. Деклараторы массивов, функций и указателей Когда декларатор состоит из немодифицируемого идентификатора, то об*ект, который объявляется, имеет немодифицированный тип. Звездочка, которая может появиться слева от идентификатора, модифицирует его в тип указателя. Если за идентификатором следуют квадратные скобки ([]), то тип модифицируется на тип массива. Если за идентификатором следуют круглые скобки, то тип модифицируется на тип функции. Сам по себе декларатор не образует полного объявления. Для этого в объявление должен быть включен спецификатор типа. Спецификатор типа задает тип элементов массива или тип адресуемых объектов и возвратов функции. Следующие примеры иллюстрируют простейшие формы деклараторов: 1. int list[20] 2. char *cp 3. double func(void), где: 1. Массив list целых величин 2. Указатель cp на величину типа char 3. Функция func без аргументов, возвращающая величину double Составные деклараторы Любой декларатор может быть заключен в круглые скобки. Обычно, круглые скобки используются для спецификации особенностей интерпретации составного декларатора. Составной декларатор- это идентификатор, определяемый более чем одним модификатором массива, указателя или функции. С отдельным идентификатором могут появиться различные комбинации модификаторов массива, указателя или функции. Некоторые комбинации недопустимы. Например, массив не может быть композицией функций, а функция не может возвратить массив или функцию. При интерпретации составных деклараторов квадратные и круглые скобки (справа от идентификатора) имеют приоритет перед звездочкой (слева от идентификатора). Квадратные или круглые скобки имеют один и тот же приоритет и рассматриваются слева направо. Спецификатор типа рассматривается на последнем шаге, когда декларатор уже полностью проинтерпретирован. Можно использовать круглые скобки, чтобы изменить порядок интерпретации на необходимый в данном случае. При интерпретации составных деклараторов может быть предложено простое правило, которое читается следующим образом: "изнутри- наружу". Нужно начать с идентификатора и посмотреть вправо, есть ли квадратные или круглые скобки. Если они есть, то проинтерпретировать эту часть декларатора, затем посмотреть налево, если ли звездочка. Если на любой стадии справа встретится закрывающая круглая скобка, то вначале необходимо применить все эти правила внутри круглых скобок, а затем продолжить интерпретацию. на последнем шаге интерпретируется спецификатор типа. В следующем примере проиллюстрированы эти правила. Последовательность шагов при интерпретации перенумерована. char *(*(*var) ()) [10]; ^ ^ ^ ^ ^ ^ ^ 7 6 4 2 1 3 5 1. Идентификатор var об*явлен как 2. Указатель на 3. Функцию, возвращающую 4. Указатель на 5. Массив из 10 элементов, который состоит 6. Из указателей на 7. Величины типа char. В следующих примерах показывается каким образом круглые скобки могут поменять смысл объявлений. 1. int *var[5]; - массив указателей на величины типа int. 2. int (*var)[5]; - указатель на массив величин типа int. 3. long *var(long,long); - функция, возвращающая указатель на величину типа long. 4. long (*var) (long,long); - указатель на функцию, возвращающую величину типа long. 5. struct both { int a; char b; } ( *var[5] ) ( struct both, struct both); массив указателей на функции, возвращающих структуры. 6. double ( *var( double (*) [3] ) ) [3]; функция, возвращающая указатель на массив из трех величин типа double. 7. union sign { int x; unsigned y; } **var[5] [5]; массив массивов указателей на указатели совмещений. 8. union sign *(*var[5]) [5]; массив указателей на массив указателей на совмещения. Описание примеров: В первом примере, модификатор массива имеет высший приоритет, чем модификатор указателя, так что var объявляется массивом. Модификатор указателя определяет тип элементов массива; элементами являются указатели на величины типа int. Во втором примере скобки меняют значение объявления первого примера. Теперь модификатор указателя имеет более высокий приоритет, чем модификатор массива, и переменная var объявляется как указатель на массив из пяти величин типа int. В третьем примере модификатор функции имеет более высокий приоритет, чем модификатор указателя, так что переменная var объявляется функцией, возвращающей указатель на величину типа long. Функция объявлена с двумя аргументами типа long. Четвертый пример похож на второй. Скобки задают более высокий приоритет модификатору указателя, и поэтому переменная var объявляется как указатель на функцию, возвращающую величину типа long. По прежнему функция объявлена с двумя аргументами типа long. Элементы массива не могут быть функциями. Взамен этому в пятом примере показано, как объявить массив указателей на функции. В этом примере переменная var объявлена как массив из пяти указателей на функции, возвращающие структуры с двумя элементами. Оба аргумента функции объявлены как структуры типа both. Заметим, что круглые скобки, в которые заключено выражение *var[5], обязательны. Без них объявление будет неверным, поскольку будет объявлен массив функций: /* ILLEGAL */ struct both *var[5] ( struct both, struct both ); В шестом примере показано, как объявлять функцию, возвращающую указатель на массив. Здесь var объявлена функцией, возвращающей указатель на массив из трех величин типа double. Тип аргумента функции задан составным абстрактным декларатором. Круглые скобки, заключающие звездочку, требуются, так как в противном случае типом аргумента был бы массив из трех указателей на величины типа double. В седьмом примере показано, что указатель может указывать на другой указатель и массив может состоять из массивов. Здесь var- это массив из пяти элементов. Каждый элемент, в свою очередь, так же массив из пяти элементов, каждый из которых является указателем на указатель совмещения, состоящего из двух элементов. В восьмом примере показано, как круглые скобки изменили смысл объявления. В этом примере var- это массив из пяти указателей на массив из пяти указателей на совмещения. Объявления переменной В этом разделе дано описание синтаксиса и семантики объявлений переменной. В частности, здесь объясняется каким образом объявить следующие переменные: Массив Переменная, представляющая на бор элементов одного типа. Указатель Переменная, которая указывает на другую переменную (содержит местоположение другой переменной в форме адреса). Общий синтаксис объявлений переменных следующий: [<sc-spesifier>] <type-spesifier> <declarator> [,<declarator>...], где <type- spesifier> - задает тип данных, представляемых переменной, а <declarator> - это имя переменной, возможно модифицированное для объявления массива или указателя. В объявлении мо жет быть задана более чем одна переменная путем задания множественного объявления, в котором деклараторы разделены запятыми. <sc- spesifier> задает класс памяти переменной. В некоторых случаях переменные могут быть инициализированы при их определении. Классы памяти и инициализация описаны в разделах 4.6 и 4.7 соответственно. Объявление простой переменной Синтаксис: <type-specifier><identifier>[,<identifier>...]; Объявление простой переменной определяет имя переменной и ее тип; оно может также определять класс памяти переменной, как это описано в разделе 4.6. Имя переменной- это идентификатор, заданный в объявлении. Спецификатор типа <type-specifier> задает имя определяемого типа данных. Можно определить имена различных переменных в том же самом объявлении, задавая список идентификаторов, разделенных запятой. Каждый идентификатор списка именует переменную. Все переменные, заданные в объявлении, имеют один и тот же тип. Примеры int x; /* Example 1 */ unsigned long reply, flag /* Example 2 */ double order; /* Example 3 */ В первом примере объявляется простая переменная x. Эта переменная может принимать любое значение из множества значений, определяемых для типа int. Во втором примере объявлены две переменные: reply и flag. Обе переменные имеют тип unsigned long. В третьем примере объявлена переменная order, которая имеет тип double. Этой переменной могут быть присвоены величины с плавающей запятой. Объявление перечисления Синтаксис: enum[<tag>]{<enum-list>}<identifier>[,<identifier>...]; enum<tag><identifier>[,<identifier>...]; Объявление перечисления задает имя переменной перечисления и определяет список именованных констант, называемый списком перечисления. Значением каждого имени списка является целое число. Переменная перечисления принимает значение одной из именованных констант списка. Именованные константы списка имеют тип int. Таким образом, память соответствующая переменной перечисления- это память, необходимая для размещения отдельной целой величины. Объявление перечисления начинается с ключевого слова enum и имеет две формы представления. В первой форме представления имена перечисления задаются в списке перечисления <enum-list>. Опция <tag>- это идентификатор, который именует тип перечисления, определенного в <enum-list>. Переменную перечисления именует <identifier>. В объявлении может быть описана более чем одна переменная перечисления. Во второй форме используется тег перечисления, который ссылается на тип перечисления. В этой форме объявления список перечисления не представлен, поскольку тип перечисления определен в другом месте. Если задаваемый тег не ссылается на уже определенный тип перечисления, или если именуемый тегом тип находится вне текущей видимости, то выдается ошибка. <enum-list> имеет следующий синтаксис: <identifier>[=<constant-expression>][,<identifier> [=<constant-expression]]... Каждый идентификатор именует элементы перечисления. По умолчанию первому идентификатору соответствует значение 0, следующий идентификатор ассоциируется со значением 1 и т. д. Имя константы перечисления эквивалентно ее значению. Запись =<constant-expression> переопределяет последовательность значений, заданных по умолчанию. Идентификатор, следующий перед записью =<constant-expression> принимает значение, задаваемое этим константным выражением. Константное выражение имеет тип int и может быть отрицательным. Следующий идентификатор в списке ассоциируется с величиной, равной <constant-expression>+1, если он явно не задается другой величиной. Перечисление может содержать повторяющиеся значения идентификаторов, но каждый идентификатор должен быть уникальным. Кроме того, он должен быть отличным от всех других идентификаторов перечислений с той же видимостью. Например, двум различным идентификаторам null и zero может быть задано значение 0 в одном и том же перечислении. Идентификаторы должны быть отличны от других идентификаторов с той же самой видимостью, включая имена обычных переменных и идентификаторы других пе...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2017.06.26
Просмотров: 65

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!