Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Принцип построения компьютера - Рефераты по информатике, программированию - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по информатике, программированию

Реферат: Принцип построения компьютера



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323

Принцип построения компьютера.

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между модулями.
Обмен информацией между отдельными устройствами компьютера производится по трем многоразрядным шинам (многопроводным линиям), соединяющим все модули: шине данных, шине адресов и шине управления.
Разрядность шины данных связана с разрядностью процессора (имеются 8-, 16-, 32-, 64-разрядные процессоры).
Данные по шине данных могут передаваться от процессора к какому-либо устройству, либо, наоборот, от устройства к процессору, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода.

Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для оперативной памяти код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам, т. е. шина адреса является однонаправленной.
Разрядность шины адреса определяет объезд адресуемой процессором памяти. Имеются 16-, 20-, 24- и 32-разрядные шины адреса.
Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются.
В первых отечественных персональных компьютерах величина адресного пространства была иногда меньше, чем величина реально установленной в компьютере оперативной памяти. Обеспечение доступа к такой памяти происходило на основе поочередного (так называемого постраничного) подключения дополнительных блоков памяти к адресному пространству.
В современных персональных компьютерах с 32-разрядной шиной адреса величина адресуемой памяти составляет 4 Гб, а величина фактически установленной оперативной памяти значительно меньше и составляет обычно 16 или 32 Мб.
По шине управления передаются сигналы, определяющие характер обмена информацией (ввод/вывод), и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.
Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.
Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, адаптеров устройств (видеоадаптер, контроллер жестких дисков и т. д.), а на программном уровне обеспечивается загрузкой в оперативную память драйверов устройств, которые обычно входят в состав операционной системы.
Контроллер жестких дисков обычно находится на системной плате. Существуют различные типы контроллеров жестких дисков, которые различаются по количеству подключаемых дисков, скорости обмена информацией, максимальной емкости диска и др.

IDE — Integrated Device Electronics EIDE — Enhanced Integrated Device Electronics SCSI — Small Computers System Interface В стандартный набор контроллеров, разъемы которых имеются на* системном блоке компьютера, обычно входят:
— видеоадаптер (с помощью него обычно подключается дисплей);
— последовательный порт СОМ1 (с помощью него обычно подключается мышь);
— последовательный порт COM2 (с помощью него обычно подключается модем);
— параллельный порт (с помощью него обычно подключается принтер);
— контроллер клавиатуры.
Через последовательный порт единовременно может передаваться 1 бит данных в одном направлении, причем данные от процессора к периферийному устройству и в обратную сторону, от периферийного устройства к процессору, передаются по разным проводам. Максимальная дальность передачи составляет обычно несколько десятков метров, а скорость до 115 200 бод. Устройства подключаются к этому порту через стандартный разъем RS-232.
Через параллельный порт может передаваться в одном направлении одновременно 8 бит данных. К этому порту устройства подключаются через разъем Centronics. Максимальное удаление принимающего устройства обычно не должно превышать 3 м.
Подключение других периферийных устройств требует установки в компьютер дополнительных адаптеров (плат).
(разрядность, адресное пространство и др.) процессора компьютера.
Процессор компьютера предназначен для обработки информации. Каждый процессор имеет определенный набор базовых операций (команд), например, одной из таких операций является операция сложения двоичных чисел.
Технически процессор реализуется на большой интегральной схеме, структура которой постоянно усложняется, и количество функциональных элементов (типа диод или транзистор) на ней постоянно возрастает (от 30 тысяч в процессоре 8086 до 5 миллионов в процессоре Pentium II).
Важнейшей характеристикой процессора, определяющей его быстродействие, является его тактовая частота. От нее, в частности, зависит количество базовых операций, которые производит процессор в секунду. За 20 лет тактовая частота процессора увеличилась почти на два порядка от 4 МГц (процессор 8086, 1978 г.) до 300 МГц (процессор Pentium II, 1997г.).
Другой характеристикой процессора, влияющей на его производительность, является разрядность. В общем случае производительность процессора тем выше, чем больше его разрядность. В настоящее время используются 8-, 16-, 32- и 64-разрядные процессоры, причем практически все современные программы рассчитаны на 32- и 64-разрядные процессоры.
Часто уточняют разрядность процессора и пишут, например, 16/20, что означает, что процессор имеет 16-разрядную шину данных и 20-разрядную шину адреса. Разрядность адресной шины определяет адресное пространство процессора, т. е. максимальный объем оперативной памяти, который может быть установлен в компьютере.
В первом отечественном персональном компьютере «Агат» (1985 г.) был установлен процессор, имевший разрядность 8/16, соответственно его адресное пространство составляло 64 Кб. Современный процессор Pentium II имеет разрядность 64/32, т.е. его адресное пространство составляет 4 Гб.
Производительность процессора является интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры (наличие кэш-памяти и др.). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, т. е. определения скорости выполнения процессором определенных операций в какой-либо программной среде.
Увеличение производительности процессоров может достигаться различными путями. В частности, за счет введения дополнительных базовых операций. Так, в процессорах Pentium MMX достигается большая производительность при работе с мультимедиа-приложениями (программами для обработки графики, видео и звука).

Организация и основные характеристики памяти компьютера.

Большое количество программ и данных, необходимых пользователю, долговременно хранятся во внешней памяти компьютера (на гибких и жестких магнитных дисках, CD-ROM и др.). В оперативную память компьютера загружаются те программы и данные, которые необходимы в данный момент.
По мере усложнения программ и увеличения их функций, а также появления мультимедиа-приложений растет информационный объем программ и данных. Если в середине 80-х годов обычный объем программ и данных составлял десятки и лишь иногда сотни килобайт, то в середине 90-х годов он стал составлять мегабайты и десятки мегабайт. Соответственно растет объем оперативной памяти. В школьном компьютере БК-0010 (1986 г.) объем оперативной памяти составлял 64 Кб, в современных персональных компьютерах он обычно составляет 16 Мбайт и более.
Логически оперативная память разделена на ячейки объемом 1. байт. Соответственно оперативная память 64 Кб содержит 65 536 ячеек, а память 16 Мб содержит 16 777 216 ячеек.
Каждая ячейка имеет свой уникальный двоичный адрес. При необходимости проведения операции считывания/записи данных из данной ячейки адрес ячейки передается от процессора к оперативной памяти по адресной шине.
Разрядность шины адреса определяет объем адресуемой памяти процессора и, соответственно, максимальный объем оперативной памяти, которую можно непосредственно использовать. Разрядность шины адреса у большинства современных персональных компьютеров составляет 32 разряда, т. е. максимальный объем оперативной памяти может составлять 2в32 = 4 Гб.
Величина аппаратно установленной оперативной памяти в современных рабочих станциях обычно составляет 16 или 32 Мб, а в серверах 64 или 128 Мб. Таким образом, имеется возможность наращивания объема оперативной памяти компьютеров без увеличения разрядности шины адреса процессора.
Физически оперативная память изготавливается в виде БИС (больших интегральных схем) различных типов (SIMM, DIMM), имеющих различную информационную емкость (1,4, 8, 16, 32 Мб). Различные системные платы имеют различные наборы разъемов для модулей оперативной памяти.
Модули оперативной памяти характеризуются временем доступа к информации (считывания/записи данных). В современных модулях типа SIMM время доступа обычно составляет 60 не, в модулях типа DIMM — 10 не.
Различные операционные системы используют различные способы организации оперативной памяти. В школьных компьютерах с 16-разрядной шиной адреса и, соответственно, максимально с 64 Кб адресуемой памяти («Агат», «YAMAHA») реализовывался принцип поочередного (так называемого постраничного) подключения дополнительных блоков физической памяти к адресному пространству процессора. Таким образом, удавалось увеличить объем оперативной памяти таких компьютеров до 128 Кб и более.
Операционная система MS-DOS создает сложную логическую структуру оперативной памяти:
• основная (conventional) память занимает адресное пространство от 0 до 640 Кб, в нее загружаются операционная система, программы и данные;
• верхняя память (UMB — Upper Memory Blocks) занимает адресное пространство от 640 Кб до 1 Мб, в нее могут быть загружены драйверы устройств;
• высокая (high) память начинается после 1 Мб и имеет объем 64 Кб, в нее может быть частично загружена операционная система;
память, которая располагается в адресном пространстве «выше» высокой памяти, может использоваться в качестве расширенной памяти или дополнительной памяти; однако память остается недоступной для программ и данных. Таким образом, под управлением операционной системы MS-DOS аппаратно установленная оперативная память используется очень нерационально. Этот недостаток преодолен в операционной системе Windows, в которой используется простая неструктурированная модель памяти и вся память доступна для загрузки программ и данных.

Внешняя память компьютера. Носители информации (гибкие и жесткие диски, CD-ROM-диски).

Основное назначение внешней памяти компьютера — долговременное хранение большого количества различных файлов (программ, данных и т. д.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем, а хранится информация на носителях. Наиболее распространенными являются накопители следующих типов:
— накопители на гибких магнитных дисках (НГМД) двух различных типов, рассчитанные на диски диаметром 5,25" (емкость 1,2 Мб) и диски диаметром 3,5" (емкость 1,44 Мб);
— накопители на жестких магнитных дисках (НЖМД) информационной емкостью от 1 до 8 Гб;
— накопители CD-ROM для CD-ROM-дисков емкостью 640 Мб.
Для пользователя имеют существенное значение некоторые технико-экономические показатели: информационная емкость, скорость обмена информацией, надежность ее хранения и, наконец, стоимость накопителя и носителей к нему (см. таблицу).

В основу записи, хранения и считывания информации положены два физических принципа, магнитный и оптический. В НГМД и НЖМД используется магнитный принцип. При магнитном способе запись информации производится на магнитный носитель (диск, покрытый ферромагнитным лаком) с помощью магнитных головок.
В процессе записи головка с сердечником из маг-нитомягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). Электрические импульсы создают в головке магнитное поле, которое последовательно намагничивает (1) или не намагничивает (О) элементы носителя.
При считывании информации намагниченные участки носителя вызывают в магнитной головке импульс тока (явление электромагнитной индукции).Носители информации имеют форму диска и помещаются в конверт из плотной бумаги (5,25") или пластмассовый корпус (3,5"). В центре диска имеется отверстие (или приспособление для захвата) для обеспечения вращения диска в дисководе, которое производится с постоянной угловой скоростью 300 об/с.
В защитном конверте (корпусе) имеется продолговатое отверстие, через которое производится запись/считывание информации. На боковой кромке дискет (5,25") находится маленький вырез, позволяющий производить запись, если вырез заклеить непрозрачной наклейкой, запись становится невозможной (диск защищен). В дискетах 3,5" защиту от записи обеспечивает предохранительная защелка в левом нижнем углу пластмассового корпуса.
Диск должен быть форматирован, т. е. должна быть создана физическая и логическая структура диска. В процессе форматирования на диске образуются концентрические дорожки, которые делятся на сектора, для этого головка дисковода расставляет в определенных местах диска метки дорожек и секторов.
Например, на гибком диске формата 3,5":
• размер сектора — 512 байт;
• количество секторов на дорожке — 18;
• дорожек на одной стороне — 80;
• сторон — 2.
Жесткие магнитные диски состоят из нескольких дисков, размещенных на одной оси и вращающихся с большой угловой скоростью (несколько тысяч оборотов в минуту), заключенных в металлический корпус. Большая информационная емкость жестких дисков достигается за счет увеличения количества дорожек на каждом диске до нескольких тысяч, а количества секторов на дорожке — до нескольких десятков. Большая угловая скорость вращения дисков позволяет достигать высокой скорости считывания/записи информации (более 5 Мб/с).
CD-ROM-накопители используют оптический принцип чтения информации. Информация на CD-ROM-диске записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося CD-ROM-диска, интенсивность отраженного луча соответствует значениям 0 или 1. С помощью фотопреобразователя они преобразуются в последовательности электрических импульсов,
Скорость считывания информации в CD-ROM -накопителе зависит от скорости вращения диска. Первые CD-ROM-накопители были односкоростны-ми и обеспечивали скорость считывания информации 150 Кб/с, в настоящее время все большее распространение получают 24-скоростные CD-ROM-накопители, которые обеспечивают скорость считывания информации до 3,6 Мб/с.
Информационная емкость CD-ROM-диска может достигать 640 Мб. Производятся CD-ROM-диски либо путем штамповки (диски белого цвета), либо записываются (диски желтого цвета) на специальных устройствах, которые называются CD-recorder.

Операционная система компьютера (назначение, состав, загрузка).

Операционная система является базовой и необходимой составляющей программного обеспечения компьютера (software). Операционная система обеспечивает управление всеми аппаратными компонентами компьютера (hardware). Другими словами, операционная система обеспечивает функционирование и взаимосвязь всех компонентов компьютера, а также предоставляет пользователю доступ к его аппаратным возможностям. К системному блоку компьютера подключаются через специальные согласующие платы (контроллеры) периферийные устройства (дисковод, принтер и т. д.). Каждое периферийное устройство обрабатывает информацию по-разному и с различной скоростью, поэтому необходимо программно согласовать их работу с работой процессора. Для этого в составе операционной системы имеются специальные программы — драйверы устройств. Каждому устройству соответствует свой драйвер.
Процесс работы компьютера в определенном смысле сводится к обмену файлами между периферийными устройствами, т. е. необходимо уметь управлять файловой системой. Ядром операционной системы является программа, которая обеспечивает управление файловой системой.
Пользователь общается с компьютером через устройства ввода информации (клавиатура, мышь). После ввода команды операционной системы специальная программа, которая называется командный процессор, расшифровывает команды и исполняет их.
Процесс общения пользователя с компьютером должен быть удобным. В состав современных операционных систем (Windows) обязательно входят модули, создающие графический интерфейс.
Таким образом, в структуру операционной системы входят следующие модули:
• базовый модуль, управляющий файловой системой;
• командный процессор, расшифровывающий и выполняющий команды;
• драйверы периферийных устройств;
• модули, обеспечивающие графический интерфейс.
Файлы операционной системы находятся на диске (жестком или гибком). Однако программы могут выполняться, только если они находятся в оперативной памяти, поэтому файлы операционной системы необходимо загрузить в оперативную память. Все файлы операционной системы не могут одновременно находиться в оперативной памяти, так как объем современных операционных систем составляет десятки мегабайт. Для функционирования компьютера обязательно должны находиться в оперативной памяти базовый модуль, командный процессор и драйверы подключенных устройств. Модули операционной системы, обеспечивающие графический интерфейс, могут быть загружены по желанию пользователя. В операционной системе Windows 95 выбор варианта загрузки представлен в виде меню.
После включения компьютера производится загрузка операционной системы в оперативную память, т. е. выполняется программа загрузки. Однако для того чтобы компьютер выполнял какую-нибудь программу, эта программа должна уже находиться в оперативной памяти. Выход из этого противоречия состоит в последовательной, поэтапной загрузке.
В соответствии с английским названием этого процесса — bootstrap, — система как бы «поднимет себя за шнурки ботинок». В системном блоке компьютера находится ПЗУ (BIOS), в котором содержатся программы тестирования компьютера и первого этапа загрузки операционной системы. После включения компьютера эти программы начинают выполйяться, причем информация о ходе этого процесса высвечивается на экране дисплея.
На этом этапе процессор обращается к диску и ищет на определенном месте (в начале диска) наличие очень небольшой программы-загрузчика BOOT. Программа-загрузчик считывается в память, и ей передается управление. В свою очередь она ищет на диске базовый модуль операционной системы, загружает его в память и передает ему управление.
В состав базового модуля операционной системы входит основной загрузчик, который ищет остальные модули операционной системы и загружает их в оперативную память.
В случае, если в дисковод вставлен несистемный диск или диск вообще отсутствует, на экране дисплея появляется соответствующее сообщение.
Вышеописанная процедура запускается автоматически при включении питания компьютера (так называемый «холодный» старт), однако часто используется процедура «перезагрузки» операционной системы («горячий» старт), которая происходит по нажатию на кнопку RESET или одновременного нажатия на клавиши + +местоположение).
Работа с файлами.
Работа на персональном компьютере в среде операционной системы фактически сводится к работе с файлами. В операционной системе Windows 95 понятие файл часто заменяется понятием документ. Файлы создаются, записываются на диск, хранятся и считываются с него, распечатываются на принтере, пересылаются по информационным сетям и т. д.
Строгое определение понятию файла да...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 2555

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434