Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Электрохимические преобразователи энергии - Рефераты по технологии - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по технологии

Реферат: Электрохимические преобразователи энергии



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
"Электрохимические преобразователи энергии"

Электрохимические преобразователи энергии.
1. Общие сведения.
К ЭХП будем относить электрохимические генераторы (ЭХГ), т.е. батареи топливных элементов (ТЭ) со вспомогательными устройствами и химические аккумуляторные батареи. Топливным элементом называется прямой преобразователь химической энергии в электрическую, в котором реакция электрохимического окисления происходит без расхода вещества электродов и электролита. Исходными реагентами служат горючее и окислитель, обладающие запасом энергии химических связей, которая преобразуется в энергию постоянного электрического тока (при получении конечного химического продукта взаимодействия компонентов топлива и выделении некоторого количества тепловой энергии). В обращенном или регенераторном режиме работы
ТЭ подведенная к нему электроэнергия преобразуется в химическую энергию реагентов топлива.
Аккумуляторным элементом, входящим в состав химической АБ, называется накопитель электрической энергии при ее превращении в химическую энергию, который осуществляет также и обратное преобразование химической энергии в электроэнергию при изменении состава вещества электродов и участии электролита в токообразующей реакции.
Характерным показателем технического качества ЭХП служит удельная энергия W* на единицу массы преобразователя. Применяемые в ЭХГ различные ТЭ принципиально могут работать на горючем органического или неорганического состава. В качестве окислителя используются преимущественно кислород O2, а также перекись водорода H2O2, азотная кислота HNO3, галогены Cl2, F2. При выборе рабочих тел ЭХГ учитывают: удельную энергию, конечные продукты реакции, стоимость, агрегатное состояние веществ и связанную с ним относительную массу тары (контейнеров, баллонов) для хранения реагентов, возможность их непрерывного подвода к электродам, скорость электрохимического взаимодействия (при наличии катализаторов и при заданных диапазонах температуры и давления). Наиболе широко для ЭХГ в качестве горючего применяется водород H2 и гидразин N2O2 в связи с их высокой активностью, легкостью подвода и отвода конечных продуктов реакции, достаточно высокой удельной энергией. Известны разработки ЭХГ с использованием метана CH4, пропана C3H8, а также метанола CH3OH, аммиака
NH3, имеющих относительно низкую стоимость. Представляют интерес перспективные разработки полутопливных элементов (с подводом только окислителя) на основе встроенного в элемент твердотельного горючего
(металлов Zn, Al, Mg, Li и др.). Отдельные разновидности компонентов топлива относятся к токсичным веществам, например, угарный газ CO, гидразин, аммиак, галогены и т.п. Поэтому предпочтительно использование водород-кислородных ЭХГ, в особенности для автономных бортовых объектов.
Конечным продуктом реакции данных ЭХГ служат пары воды, эти ЭХГ являются экологически чистыми. После сепарации и удаления электролита вода используется в системах жизнеобеспечения, в частности на КЛА, либо направляется для получения исходных продуктов реакции (H2 и O2) в регенерационных циклах.
Общим достоинством ЭХГ на ТЭ является высокий КПД. Применительно к автономным объектам существенное значение имеет бесшумность работы ЭХГ, отсутствие механически перемещающихся деталей и изнашивающихся частей.
Ресурс ЭХГ определяется имеющимся запасом топлива (в открытых циклах) либо долговечностью вспомогательного оборудования в циклах с регенерацией; ресурс ЭХГ может превосходить 104 ч.
Энергетический уровень ЭХГ при мощности АЭУ P=10 - 100 кВт характеризуется удельной энергией W*=(1.5 .. 2)*103 кДж/кг на единицу массы генератора, заправленного топливом. (Для ряда разновидностей химических АБ значение W* на порядок меньше.) В перспективе возможно создание ЭХГ мощностью P=103 кВт при КПД h=0.9.
Недостатки ЭХГ состоят в сложности обеспечения сбалансированных электрохимических реакций и в относительно малой удельной мощности P* на единицу массы генератора. Без учета массы запаса топлива параметр P*=0.15
.. 0.2 кВт/кг несколько ниже, чем в химической АБ. Ввиду специфики электрохимических реакций из ЭХГ нельзя достаточно быстро вывести электрическую энергию. Для обеспечения сбалансированной реакции в ЭХГ необходимо с помощью специальных подсистем обеспечить разделение и дозированную подачу компонентов топлива, а также непрерывное удаление конечных продуктов токообразующей реакции. Показатели ЭХГ достаточно чувствительны к чистоте химреагентов, примеси существенно снижают эффективность ТЭ, их ресурс.
2. Область применения.
Применение ЭХГ нашли в основном для энергообеспечения АЭУ, в том числе подвижных и стационарных. Имеется значительный опыт, накопленный, в частности, за рубежом (США), по использованию ЭХГ в разработках для космических программ "Апполон", "Джеммини", "Скайлеб", "Спейс Шаттл" и др.
Проводятся многочисленные разработки и исследования по применению ЭХГ для наземных транспортных установок, например электромобилей, а также для морских судов.
Традиционно применяемым во многих отраслях техники видом ЭХП являются химические АБ. Наиболее широко распространены сравнительно недорогие свинцово-кислотные АБ. Они достаточно долговечны по числу допустимых циклов
"заряд - разряд", но имеют сравнительно низкую удельную энергию (W*250 кДж/кг. Еще более высокий показатель (W*>500 кДж/кг) имеют серно-натриевые АБ, но их ресурс составляет 100 - 200 циклов "заряд - разряд". Дальнейшее повышение W* теоретически до значений 103 кДж/кг возможно в литиевых АБ, но их недостаток - малый ресурс вследствие высокой корозионной активности Li.
Запас энергии в химической АБ принято характеризовать зарядной емкостью
(в Ач или Кл), необходимое значение которой зависит от мощности и времени работы потребителей электроэнергии. Химические АБ получили широкое распространение на транспорте, в системах электростартерного запуска авиационных и автомобильных двигателей, в судовых установках, на электромобилях, во внутризаводском электротранспорте, на электропогрузчиках и т.д.
В условиях КЛА всегда реализуется параллельная работа химической АБ с
ФЭП. Последние производят подзарядку АБ в "дневные" часы. Для автономных установок, в том числе на КЛА, целесообразно также сочетание ФЭП с системой
"электролизер - ЭХГ". Часть энергии ФЭП в "дневные" часы затрачивается на разложение воды, а в "ночные" часы полученные H2 и O2 обеспечивают работу
ЭХГ.
3. Физико - химические процессы в ЭХГ
Как и в реакции горения (активируемого, например, зажиганием), стадии токообразующей электрохимической реакции также протекают одновременно, но локализованы в различных областях внутреннего пространства ТЭ. Основные данные некоторых применяемых на практике ТЭ приведены в табл. 1. В качестве типового приметра рассмотрим работу водород - кислородного ТЭ.
Стехиометрическое уравнение суммарной реакции:

имеет такой же вид, как при горении. Поясним устройство и принцип действия
ТЭ, в котором электрохимическая реакция происходит на стыках трех фаз состояния веществ: газообразной (восстановителя H2 и окислителя O2), жидкостной (щелочного электролита - раствора KOH) и твердой (пористых металлокерамических электродов). Схема ТЭ показана на рис. 1а. Электроды анод 1 и катод 2 выполнены из композитного материала
Таблица 1: Теоретические значения удельных показателей ТЭ для разработанных ЭХГ.

ХимическиеНапря-жени Энергия на
е Расход на единицу генерируемой единицу
реагенты элемента, энергии, г/МДж массы
В топлива,
кДж/кг
горючего окислителятоплива
H2 - O2 0.9 10.6 91.6 102.2 9750
C3H8 - O2 0.8 27 91.6 118.6 8460
NH3 - O2 0.7 83.4 116.6 200 5000
N2H4 - O2 0.9 91.6 91.6 183.2 5450
N2H4-H2O2 0.9 91.6 197.4 289 3470
Примечание: С учетом влияния необратимых электрохимических процессов в реальных ТЭ удельный расход топлива возрастает в 1.5 - 2 раза, а его удельная энергия снижается в 1.5 - 2 раза по сравнению с соответствующими теоретическими показателями, приведенными в таблице.
(например, из графитовой керамики с платиновым катализатором). Электроды 1 и 2 отделены слоем электролита - раствора щелочи KOH, который не пропускает нейтральные молекулы или атомы газов водорода и кислорода. Ионизированные газы, например, ионы H+, могут дрейфовать сквозь электролит. Корпус ТЭ выполняется из титанового сплава 4, химически не взаимодействующего с KOH.
Внешняя цепь ТЭ замкнута сопротивлением Rн нагрузки, которое подключено к металлическим наплавкам на электродах.
Газообразные компоненты химического топлива - отдающий свои электроны восстановитель H2 и присоединяющий электроны окислитель O2 - - непрерывно подводятся под избыточным давлением к порам анода и катода (рис. 1а) из резервуаров с запасом реагентов.
1. На поверхностях анода, смоченных р-ром KOH, в электролите растворяется газообразный водород и абсорбируется на стенках пор электрода.
В растворе гидроксид калия находится в диссоциированном состоянии:

Водород в присутствии ионов OH- он легко отдает электроны (окисляется), образуя воду:

а) б)

Рис . 1. Схемы водородно-кислородных топливных элементов: а - с жидким электролитом (раствором КОН); б - с ионообменной мембраной
2. На поверхности катода аналогичные явления приводят к реакции восстановления кислорода, который в присутствии воды отбирает у этого электрода образовавшиеся свободные электроны:

В итоге этих первой и второй стадий "холодного горения" на аноде образуется избыток электронов, а в примыкающем растворе - недостаток ионов гидроксила OH-. На катоде же имеется недостаток электронов, а в окружающем его электролите - избыток ионов H+. Вследствие этого протекают следующие две стадии реакции.
3. По внешнему участку цепи от анода к катоду через сопротивление Rн проходят электроны 4e-, совершая полезную электрическую работу (направление тока I противоположно перемещению электронов).
4. В электролите происходит диффузия ионов 4OH- с катода на анод и посредством ионного тока замыкается электрическая цепь (согласно уравнению непрерывности полного тока div J = 0).
Если сложить реакции для первой и второй стадии, получится результирующее уравнение реакции , конечным продуктом которой является вода. Избыточное количество паров воды 2H2O удаляют из ТЭ, например, с помощью продувки с последующей сепарацией или выпариванием. Очищенная от паров электролита, вода может направляться для дальнейшей утилизации (рис.
1а).
Сбалансированный ход реакций на указанных стадиях у поверхностей электродов определяется равновесием давлений газовой и жидкостной фаз: pr = pэ + pк ; здесь pr - внешнее давление газообразных реагентов ( водорода или кислорода ); pэ - гидростатическое давление электролита; pк =(s cosq)/d - его капиллярное давление в порах электродов; s - поверхностное натяжение
(H/м); q - угол смачиваемости; d - диаметр поры.
В изготовляемых двухслойными электродах ЭХГ поры выполняются с различными значениями d.Слой, который обращен к газовой среде(Н2 или О2) и содержит измельченный катализатор ( например, Pt), имеет толщину d»0.5 ё
0.6 мми поры с d»30 ё 50 мкм. В обращенном к KOH слое с мм поры имеют d мкм. Давление pз меньше на чем давление которое препятствует вытеканию электролита. Нейтральные молекулы или атомы газообразных компонентов при этом значении pr также не могут проникнуть в электролит, преодолев капилярные силы. На поверхности электродов обеспечивается равновесие фаз, поэтому через KOH возможно только ионов, образовавшихся в результате реакций.
Наряду с KOH в ТЭ возможно использование кислотного электролита - раствора H2SO4.
Требующееся испарение воды из элементов с жидкостным электролитом, работающих при давлении 5Ч105 Па и более, определяет эксплуатацию ТЭ на среднетемпературном ( 373 - 523 К ) или высокотемпературном ( боле 523 К ) уровне, что обусловливает необходимость наличия в составе ЭХГ ряда технически сложных вспомогательных устройств. Для преодоления таких затруднений применительно к АЭУ разработаны водород - кислородные ТЭ с ионообменными мембранами (ИОМ) в виде квазитвердых веществ (гелей), разделяющих разнополярные электроды в ТЭ. Изготовляют ИОМ из фтороуглеродистого аналога тефлона. На полимерной сетке - матрице закреплены ионы, они могут обмениваться на другие ионы, присутствующие в межэлектронной среде. На практике для ТЭ применяют ИОМ с сульфатными катионами, например,
По своим функциям ИОМ подобна электролиту, она способна противостоять воздеймтвию нейтральных молекул и атомов H2 и O2. Схема ТЭ с ИОМ приведена на рис. 1б. Пористые керамические электроды 1 и 2 прижаты к мембране 3.
Контактирующие с ИОМ поверхности анода и катода покрыты каталитическими слоями металла. Принцип работы ТЭ с ИОМ состоит в следующем.
На аноде подводимый газообразный водород ионизируется по реакции:
.
Ионы водорода под влиянием градиента их концентрации и соответствующего электрического поля перемещаются сквозь ИОМ к катоду, на котором протекает реакция:

Электроны 4e- через Rн поступают к катоду. Полученная вода (H2O)n под действием градиента ее концентрации возвращается к аноду. Две молекулы воды
(2H2O), образующиеся в элементарном акте реакции, необходимо отводить из зоны реакции, например, дренажным устройством. При работе ТЭ гель в ИОМ набухает и находится, как указывалось, в квазитвердом состоянии.
Кроме ИОМ в ТЭ применяются также капилярные мембраны типа волокнистых материалов, пропитанных щелочным электролитом (например, асбест). Принцип действия ТЭ с капилярными мембранами такой же, как ТЭ с жидкостным электролитом.
В отдельных установках возможно использование ЭХГ с ТЭ, работающими на других компонентах топлива, кроме H2 - O2. Итоговая электрохимическая реакция окисления восстановителя Red и восстановителя Ox имеет в общем случае вид

В ТЭ имеет место встречное движение разнополярных ионов внутри электролита и переход электронов от анода к катоду по сопротивлению Rн, замыкающему внешнюю цепь. При этом осуществляется прямое преобразование энергии химических связей Red и Ox в электрическую энергию. Конкретизацию общей формы записи токообразующих реакций рассмотрим примере окисления гидразина N2H4. Реакция окисления гидразина имеет место в ЭХГ малой мощности.
Анодное окисление гидразина:

Катодное восстановление кислорода:

Суммарное стехиометрическое уравнение реакции:

График зависимости U от I

а) б)
Рис. 2: Характеристики водородно - кислородного ЭХГ: а - общая форма характеристикии и зависимость полезной мощности от тока; б - аналоги внешней характеристики - зависимости напряжения от плотности тока для ТЭ различного исполнения (1-с раствором электролита; 2-с капилярной мембраной; 3-с ИОМ при Т=355 К; 4-с ИОМ при Т=313 К).

Внешняя характеристика U=f(I).
Отклонение от состояния равновесия при работе ТЭ практически приводит к уменьшению напряжения и снижению КПД по сравнению с их термодинамическими значениями вследствие изменения потенциала катода и анода при прохождении тока в цепи ТЭ. Совокупность этих явлений называют поляризацией. При совершении работы выхода (активации) из металла электрода в раствор электролита электрон преодолевает потенциальный барьер, образованный двойным слоем разноименных зарядов. На границе "электрод - электролит" наблюдается различие концентраций ионизированных реагентов. Электролит и электроды имеют собственное внутреннее сопротивление. Упрощенно, совместное влияние перечисленных эффектов можно учесть с помощью падения напряжения на нелинейном внутреннем сопротивлении ТЭ Rвн. При этом уравнение внешней характеристики приближенно записывается в виде
U = Eн - IRвн. где Eн - ЭДС при нагрузке, учитывающая активационную и концентрационную поляризацию; сопротивление электролита Rэл практически равно Rвн и учитывает "омическую" поляризацию.
Общая форма внешней характеристики ЭХГ показана на рис. 2а. Большая крутизна dU / dI при малых и повышенных значениях ...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 1223

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434