Главная / Рефераты / Рефераты по архитектуре
Реферат: Проектирование и расчет водопропускных труб
Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
СОДЕРЖАНИЕ стр. Введение. 2 1. Исходные данные и краткая характеристика района проектирования. 3
1.1. Исходные данные. 3 1.2. Климат. 3 1.3. Гидро-геологические условия. 3 1.4. Рельеф. 3 2. Гидравлические расчеты отверстий водопропускных труб. 5
2.1. Определение площади водосборов. 5 2.2. Определение максимального расхода от ливневого стока. 5 2.3. Определение максимального расхода от снегового стока. 6 2.4. Определение пропускной способности трубы при безнапорном режиме. 7 2.5. Расчет отверстий труб с учетом аккумуляции воды у сооружения. 8 2.6. Определение высоты насыпи земполотна над трубой и длины трубы. 10 3. Проектирование поверхностного водоотвода на участке трассы а/д. 12
4. Расчет элементов виража и его конструктивные схемы. 13 Литература. 14 Введение.
Малые водоотводные сооружения устраиваются в местах пересечения автомобильной дороги с ручьями, оврагами или балками, по которым стекает вода от дождей или таяния снега. Количество водопропускных сооружений зависит от климатических условий и рельефа, а стоимость их составляет 8-15% от общей стоимости автомобильной дороги с усовершенствованным покрытием. Поэтому правильный выбор типа и рациональное проектирование водопропускных сооружений имеют большое значение для снижения стоимости строительства автомобильной дороги. Большую часть водопропускных сооружений, строящихся на автомобильных дорогах, составляют трубы. Водопропускные трубы — это искусственные сооружения, предназначенные для пропуска под насыпями дорог небольших постоянных или периодически действующих водотоков. Они не меняют условий движения автомобилей, поскольку их можно располагать при любых сочетаниях плана и профиля дороги. Они практически не чувствительны к возрастанию временной нагрузки и динамическим ударам, требуют меньшего расхода материала на постройку и меньших затрат на содержание и ремонт, допускают более высокие скорости течения воды в сооружении по сравнению с мостами, а поэтому при разных размерах пропускная способность их выше. Для увеличения водопропускной способности наряду с одноочковыми трубами применяются и многоочковые. Трубы не стесняют проезжую часть и обочины, а также не требуют изменения типа дорожного покрытия. Кроме того, трубы строятся полностью сборными из железобетонных и бетонных элементов небольшой массы, что позволяет пользоваться кранами малой грузоподъемности. Труба состоит из средней части, входного и выходного оголовков. Средняя часть трубы обычно разделена на звенья, установленные на фундамент, объединяющий их в секции, или на грунтовую подушку. Между секциями устраивают сквозные деформационные швы для предотвращения трещин или других повреждений трубы от воздействия неравномерной осадки. Нижнюю часть отверстия или дно трубы оформляют в виде лотка, которому придают продольный уклон с учетом уклона лога на месте устройства трубы. Уклон трубы обеспечивают путем ступенчатого расположения ее секций. Трубы под насыпями можно классифицировать по следующим признакам: V по характеру протекания воды; V по форме поперечного сечения трубы; V по конструкции входной части трубы; V по материалу труб. По характеру протекания воды различают трубы напорные, безнапорные и полунапорные. > в напорных трубах вода заполняет все сечение трубы. > в трубах безнапорных поток на всем протяжении трубы имеет свободную поверхность. > в полунапорных трубах входное сечение трубы затоплено, а на остальном протяжении поток имеет свободную поверхность. По форме поперечного сечения трубы бывают круглые, овальные, трапецеидальные, прямоугольные, треугольные. По конструкции входной части различают трубы: V с портальным оголовком; V с раструбным оголовком; V с воротниковым оголовком; при воротниковом оголовке трубы срезаны в плоскости откоса насыпи, а потому их иногда называют трубами со скошенными оголовками; V с коридорным оголовком; V с обтекаемым оголовком. По материалу трубы бывают железобетонные, металлические, деревянные, бетонные, каменные и др. Исходные данные и краткая характеристика района проектирования. 1 Исходные данные.
1. Район проектирования — Воронежская область. 2. Интенсивность движения на двадцатилетнюю перспективу — по курсовому проекту №1. 3. Топографическая карта — по курсовому проекту №1. 4. Продольный профиль — по курсовому проекту №1.
2 Климат. Воронежская область расположена в III-ей дорожно-климатической зоне — зоне со значительным увлажнением грунтов в отдельные периоды года. Для района проложения автомобильной дороги характерен климат с не очень холодной зимой и теплым летом, что видно из дорожно-климатического графика (рис 1.1). Лето теплое: среднесуточная температура наиболее жаркого месяца (июля) составляет +20,4?С; зимы не холодные со среднесуточной температурой наиболее холодного месяца (января) –9,2?С. Отрицательные температуры воздуха бывают с ноября по март, а расчетная длительность периода отрицательных температур Т=179 сут. Абсолютный максимум температуры воздуха в году достигает +35?С, минимум -32?С. Следовательно, амплитуда температуры составляет 67?С. Годовая средняя суточная амплитуда температуры воздуха бывает в июне (13,2?С), а максимальная в феврале (30,2?С). За год выпадает 696 мм осадков; количество осадков в жидком и смешанном виде 612 мм за год; суточный максимум 112 мм. Средняя за зиму высота снежного покрова составляет 25 см, а число дней со снежным покровом до 142 сут (период 04.12 — 29.03). Для рассматриваемого района зимой преобладают ветры северного и западного направлений. Летом преобладают ветры южного и юго-восточного направлений (рис 1.2). Средняя скорость ветра за январь равна 3,22 м/с. Максимум из средних скоростей по румбам за январь — 6,8 м/с. Средняя скорость ветра за июль равна 3,55 м/с. Максимум из средних скоростей по румбам за июль — 4,4 м/с.
3 Гидро-геологические условия. По характеру и степени увлажнения проектируемый район относится к 1-му типу местности: поверхностный сток обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы серые, лесные слабоподзолистые, в северной части зоны — темно-серые лесные и черноземы оподзоленные и выщелоченные. В районе дороги грунты представлены супесями.
4 Рельеф. Вероятная полоса проложения дороги пересекает грядовые холмы рельефа высотой менее 80 м (с перепадом высот 40 м) и речку без поймы и заболачивания. Холмы без растительности и имеют устойчивые склоны. Это позволяет оценить рельеф как равнинный слабопересеченный, то есть трудных участков не имеет и потому для проектирования следует принимать основные расчетные скорости. Гидравлические расчеты отверстий водопропускных труб. 1 Определение площади водосборов. Для определения расчетного расхода необходимо в процессе технических изысканий выполнить необходимые топографо-геодезические работы и обследования. Основными исходными данными являются план бассейна с характеристикой его площади, длины главного лога, среднего уклона лога, склонов. Кроме того необходимо установить характер поверхности бассейна: растительность, почвенный покров. Бассейном называется участок местности, с которого вода во время выпадения дождей и снеготаяния стекает к проектируемому водопропускному сооружению. Для определения площади бассейна необходимо установить границы его на карте или на местности. Границей бассейна с одной стороны всегда является сама дорога, а с другой стороны — водораздельная линия, которая отделяет данный бассейн от соседних. Бассейн малых водопропускных сооружений на автомобильных дорогах снимают, как правило, по карте. При определении границ бассейна сначала устанавливают ближайшие к водопропускному сооружению точки перегиба местности на трассе (выпуклые переломы). Эти точки будут началом и концом водораздельной линии. Другие точки водораздельной линии определяют аналогично, при этом учитывают, что водораздел идет всегда перпендикулярно горизонталям и от него вода должна стекать в противоположные стороны. При отсутствии необходимых карт или когда водосборы выражены неясно, а также при площади бассейна не менее 0,25 км2 надлежит производить съемку водосборов в натуре. Если местность открытая пересеченная и линии водоразделов ясно выражены, применяют съемку засечками. В этом случае на характерных точках водораздельной линии устанавливают вехи таким образом, чтобы их можно было видеть с двух или нескольких точек трассы. В этих точках устанавливается инструмент, который ориентируют по направлению трассы дороги. Последовательно визируя на выставленные вехи, замеряют углы между направлением трассы, принимаемой за базис, и визирными лучами на веху. На каждую веху должны быть сделаны взгляды не менее чем с двух точек трассы. На плане, ориентируясь на направление трассы, проводят визирные линии. Если из-за рельефа и растительности на поверхности бассейна нельзя выполнить съемку указанным методом, применяют обход по водоразделам. При этом расстояние между вехами определяют лентой или шагомером, а углы поворота по румбам или азимутам, измеренными буссолью или гониометром. Если водораздел плоский и неясно выражен на поверхности, бассейн снимают ходами по тальвегам до водораздела. Измерив длины ходов и определив их направления, составляют план бассейнов. Площадь бассейна, очерченного по карте, определяется планиметром, палеткой или разбивкой бассейна на простейшие геометрические фигуры. В данном курсовом проекте площадь водосбора определялась по выданной топографической карте (см. приложение) методом разбивки очерченного на ней бассейна на квадраты со сторонами 100 м с последующим их суммированием. Площадь водосборного бассейна, F = 1,64 км2. Расчет максимальных расходов ведется по ливневому стоку и стоку талых вод. За расчетный принимается больший из них.
2 Определение максимального расхода от ливневого стока. Для определения максимального расхода ливневого стока (Qл) необходимы следующие данные: 1. Ливневой район для заданной области, который определяется по рис. XV.2 [1]. Воронежской области соответствует 6 ливневый район; 2. Площадь водосборного бассейна, принимается по карте, F, км2, F = 1,64 км2; 3. Длина главного лога, определяется по карте, L, м, L = 1820 м; 4. Средний уклон лога, i, ‰, i = (57,92-51,16)/1820 = 4 ‰; 5. Уклон лога у сооружения, iсоор, ‰, iсоор = (52,10-51,16)/320 = 3 ‰; 6. Вероятность превышения паводка для трубы на дороге III категории — 2 %. Расход ливневого стока, Qл, м3/с, определяется по следующей формуле: где ачас — интенсивность ливня часовой продолжительности в зависимости от ливневого района и вероятности превышения максимальных расходов расчетных паводков, мм/мин. По табл. XV.2 [1] ачас = 0,89; kt — коэффициент перехода от интенсивности ливня часовой продолжительности к интенсивности ливня расчетной продолжительности, зависящий от длины водосбора L и среднего уклона лога i, %. По табл. XV.3 [1] kt = 1,39; F — площадь водосбора, км2, F = 1,64 км2; ? — коэффициент потерь стока, зависящий от вида и характера поверхности бассейна. По табл. I [2] стр. 23 ? = 0,25; ? — коэффициент редукции (уменьшения), учитывающий неполноту стока, тем большую, чем больше водосбор. Коэффициент редукции ? зависит от площади бассейна и вычисляется по формуле: Тогда расход ливневого стока по формуле (1) равен: 3 Определение максимального расхода от снегового стока. Максимальный расход талых вод для любых бассейнов (Qт), м3/с, определяется по формуле: где k0 — коэффициент дружности половодья; n — показатель степени зависящий, который как и k0 зависит от рельефа и климатических условий и определяются по табл. II [2] стр. 23. По указанной таблице k0 = 0,02, а n = 0,25; F — площадь водосбора, км2; ?1 — коэффициент, учитывающий снижение максимальных расходов в заболоченной местности. В данном случае бассейн не заболочен, поэтому ?1 принимаем равным 1; ?2 — коэффициент, учитывающий снижение максимальных расходов в залесенных бассейнах. Определяется ?2 по формуле: где Ал — залесенность водосбора, Ал =0,5, тогда по формуле (4) ?2 =0,7; hр — расчетный слой суммарного стока той же вероятности превышения, что и искомый максимальный расход, мм. Определяется по формуле: где h0 — средний многолетний слой стока, мм, определяемый по рис. XV.3 [1]. Для Воронежской области h0 = 40 мм; kр — модульный коэффициент для расчетного расхода. Величина коэффициента kр зависит от величины коэффициента асимметрии Cs, который в свою очередь зависит от коэффициента вариации Cv. Величина коэффициента Cv определяется по карте коэффициентов вариации слоя стока половодий. По рис. XV.4 [1] Cv = 0,5. Данную величину для бассейнов площадью менее 200 км2 умножают на коэффициент определяемый по табл. I [2] на стр. 7 и равный 1,25. Тогда Cv = 0,63. Коэффициент асимметрии Cs для равнинных водосборов принимается равным: Величина коэффициента kр определяется по кривым модульных коэффициентов слоев стока для соответствующей вероятности превышения по рис. XV.5 [1]. kр =2,6. Тогда по формуле (5) hр = 104 мм, а по формуле (3): 4 Определение пропускной способности трубы при безнапорном режиме. Безнапорный режим характеризуется незатопленным входным отверстием и работой трубы неполным сечением, что отвечает условию: где H — подпор перед трубой, м; hтр — высота трубы в свету, м. Принимаем наиболее максимальный расход для определения диаметра трубы, т. е. ливневый расход равный 4,24 м3/с. Принимаем по выбранному расходу диаметр трубы (1,5 м) и скорость воды на выходе (3,9 м/с) по табл. IV [2] стр. 26. Критическая скорость Vкр, м/с, определяется по формуле: где Vс — скорость в сжатом сечении, м/с. Критическая глубина hкр, м, определяется по формуле: где g — ускорение свободного падения, м/с2. Глубина воды в сжатом сечении hс, м: Подпор воды перед трубой определяется по формуле, H, м: где ? — коэффициент скорости, принимаемый для конического звена 0,97. Произведем проверку выбранной трубы на высоту подпора трубы по формуле (7): Произведем проверку пропускной способности выбранной трубы. Пропускная способность трубы Qc, м/с3, при безнапорном режиме определяется по формуле: где ?с — площадь сжатого сечения в трубе, м2, который определяется из рис. I [2] стр. 13 из соотношения hc/d = 0,38. По этому графику видно, что ?/d2 = 0,29. Следовательно, ?с = 0,65 и по формуле (12): Выбираем одноочковую трубу диаметром 1,5 м.
5 Расчет отверстий труб с учетом аккумуляции воды у сооружения. Аккумуляция учитывается во всех случаях расчета по преобладающему ливневому стоку. В результате аккумуляции воды перед трубой образуется пруд. Время прохождения воды через трубу увеличивается по сравнению с продолжительностью паводка, вследствие чего происходит снижение расчетного сбросного расхода в сооружении Qс по сравнению с максимальным паводочным расходом Qр, что приводит к значительному уменьшению отверстия трубы. Расчет производится по ливневому стоку с соблюдением условия Qc ? Qт, где Qт по формуле (3) равно 1,9 м3/с, а Qc по формуле (1) равно 4,24 м3/с. Условие выполняется. Порядок определения расчетного сбросного расхода в сооружении с учетом аккумуляции следующий: 1. Вычисляется объем стока W, м3, по формуле: где ачас — интенсивность ливня часовой продолжительности в зависимости от ливневого района и вероятности превышения максимальных расходов расчетных паводков, мм/мин. По табл. XV.2 [1] ачас = 0,89; ? — коэффициент редукции, определяемый по формуле (2). ? = 0,5; kt — коэффициент перехода от интенсивности ливня часовой продолжительности к интенсивности ливня расчетной продолжительности. По табл. XV.3 [1] kt = 1,39. 2. Определяется крутизна склонов m1 и m2. 3. Для ряда значений H (с интервалом 0,5 м) в форме таблицы вычисляются объемы пруда аккумуляции Wпр, м3, по формуле: где H — максимальная глубина в пониженной точке живого сечения при расчетном уровне подпертых вод, м; m1, m2, iл — крутизна склонов лога и его уклон. А также расчетный расход Qс по формуле: где Qл — максимальный р...
ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!
Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь на сайте:
|
|
|
Добавлено: 2010.10.21
Просмотров: 1327
|
Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21
При использовании материалов сайта, активная ссылка на AREA7.RU обязательная! |