Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Расчет редуктора - Рефераты по промышленности, производству - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по промышленности, производству

Реферат: Расчет редуктора



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323

Расчет редуктора

Спроектировать привод.
В состав привода входят следующие передачи:
1 - ременная передача с клиновым ремнём;
2 - закрытая зубчатая цилиндрическая передача;
3 - закрытая зубчатая цилиндрическая передача.
Мощность на выходном валу Р = 6,0 кВт.
Частота вращения выходного вала n = 70,0 об./мин.
Коэффициент годового использования Кг = 1,0.
Коэффициент использования в течении смены Кс = 1,0.
Срок службы L = 5,0 г.
Число смен S = 2,0.
Продолжительность смены T = 8,0 ч.
Тип нагрузки - постоянный.

Выбор электродвигателя и кинематический расчет

По табл. 1.1[1] примем следующие значения КПД:
- для ременной передачи с клиновым ремнем : 1 = 0,96
- для закрытой зубчатой цилиндрической передачи : 2 = 0,975
- для закрытой зубчатой цилиндрической передачи : 3 = 0,975
Общий КПД привода будет :
 = 1 x ... x n x подш.3 = 0,96 x 0,975 x 0,975 x 0,993 = 0,885
где подш. = 0,99% - КПД одного подшипника.
Угловая скорость на выходном валу будет :
вых. =  x nвых. / 30 = 3.14 x 70,0 / 30 = 7,33 рад/с
Требуемая мощность двигателя будет :
Pтреб. = Pвых. /  = 6,0 / 0,885 = 6,776 кВт
В таблице 24.7[2] по требуемой мощности выбираем электродвигатель 160M8 (исполнение IM1081), с синхронной частотой вращения 750,0 об/мин, с параметрами: Pдвиг.=11,0 кВт. Номинальная частота вращения с учётом скольжения nдвиг.=727,0 об/мин, угловая скорость двиг. =  x nдвиг. / 30 = 3,14 x 727,0 / 30 = 76,131 рад/с.
Oбщее передаточное отношение:
U = двиг. / вых. = 76,131 / 7,33 = 10,386
Для передач выбрали следующие передаточные числа:
U1 = 1,45
U2 = 3,15
U3 = 2,24
Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу :
  Вал 1-й
 n1 = nдвиг. / U1 =
  727,0 / 1,45 = 501,379 об./мин.
 1 = двиг. / U1 =
  76,131 / 1,45 = 52,504 рад/c.
  Вал 2-й
 n2 = n1 / U2 =
  501,379 / 3,15 = 159,168 об./мин.
 2 = 1 / U2 =
  52,504 / 3,15 = 16,668 рад/c.
  Вал 3-й
 n3 = n2 / U3 =
  159,168 / 2,24 = 71,057 об./мин.
 3 = 2 / U3 =
  16,668 / 2,24 = 7,441 рад/c.
Вращающие моменты на валах будут:
T1 = Tдвиг. x U1 x 1 x подш. = Pтреб. x U1 x 1 x подш. / двиг. =
6,776 x 106 x 1,45 x 0,96 x 0,99 / 76,131 = 122652,556 Нxмм
где двиг. = 76,131 рад/с.
T2 = T1 x U2 x 2 x подш. =
122652,556 x 3,15 x 0,975 x 0,99 = 372929,696 Нxмм
T3 = T2 x U3 x 3 x подш. =
372929,696 x 2,24 x 0,975 x 0,99 = 806333,672 Нxмм

Расчет 1-й клиноремённой передачи

1. Вращающий момент на меньшем ведущем шкиве:
T(ведущий шкив) = 89002,493 Нxмм.
2. По номограмме на рис. 7.3[1] в зависимости от частоты вращения меньшего ведущего шкива n(ведущий шкив) (в нашем случае n(ведущий шкив)=727,0 об/мин) и передаваемой мощности:
P = T(ведущий шкив) x (ведущий шкив) = 89002,493 x 76,131 = 6,776кВт
принимаем сечение клинового ремня А.
3. Диаметр меньшего шкива по формуле 7.25[1]:
d1 = (3...4) x T(ведущий шкив)1/3 = (3...4) x 89002,4931/3 = 133,944...178,591 мм.
Согласно табл. 7.8[1] принимаем d1 = 160,0 мм.
4. Диаметр большого шкива (см. формулу 7.3[1]):
d2 = U x d1 x (1 - ) = 1,45 x 160,0 x (1 - 0,015 = 228,52 мм.
где  = 0,015 - относительное скольжение ремня.
Принимаем d2 = 224,0 мм.
5. Уточняем передаточное отношение:
Uр = d2 / (d1 x (1 - )) = 224,0 / (160,0 x (1 - 0,015)) = 1,421
При этом угловая скорость ведомого шкива будет:
(ведомый шкив) = (ведущий шкив) / Uр = 76,131 / 1,421 = 53,564 рад/с.
Расхождение с требуемым (52,504-53,564)/52,504=-2,018%, что менее допускаемого: 3%.
Следовательно, окончательно принимаем диаметры шкивов:
d1 = 160,0 мм;
d2 = 224,0 мм.
6. Межосевое расстояние Ap следует принять в интервале (см. формулу 7.26[1]):
amin = 0.55 x (d1 + d2) + T0 = 0.55 x (160,0 + 224,0) + 6,0 = 217,2 мм;
amax = d1 + d2 = 160,0 + 224,0 = 384,0 мм.
где T0 = 6,0 мм (высота сечения ремня).
Принимаем предварительно значение a = 447,0 мм.
7. Расчетная длина ремня по формуле 7.7[1]:
L = 2 x a + 0.5 x  x (d1 + d2) + (d2 - d1)2 / (4 x a) =
  2 x 447,0 + 0.5 x 3,142 x (160,0 + 224,0) + (224,0 - 160,0)2 / (4 x 447,0) =
  1499,477 мм.
Выбираем значение по стандарту (см. табл. 7.7[1]) 1500,0 мм.
8. Уточнённое значение межосевого расстояния aр с учетом стандартной длины ремня L (см. формулу 7.27[1]):
aр = 0.25 x ((L - w) + ((L - w)2 - 2 x y)1/2)
где w = 0.5 x  x (d1 + d2) = 0.5 x 3,142 x (160,0 + 224,0) = 603,186 мм;
y = (d2 - d1)2 = (224,0 - 224,0)2 = 4096,0 мм.
Тогда:
aр = 0.25 x ((1500,0 - 603,186) + ((1500,0 - 603,186)2 - 2 x 4096,0)1/2) = 447,262 мм,
При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01 x L = 15,0 мм для облегчения надевания ремней на шкивы и возможность увеличения его на 0,025 x L = 37,5 мм для увеличения натяжения ремней.
9. Угол обхвата меньшего шкива по формуле 7.28[1]:
1 = 180o - 57 x (d2 - d1) / aр = 180o - 57 x (224,0 - 160,0) / aр = 171,844o
10. Коэффициент режима работы, учитывающий условия эксплуатации передачи, по табл. 7.10[1]: Cp = 1,2.
11. Коэффициент, учитывающий влияние длины ремня по табл. 7.9[1]: CL = 0,98.
12. Коэффициент, учитывающий влияние угла обхвата (см. пояснения к формуле 7.29[1]): C = 0,98.
13. Коэффициент, учитывающий число ремней в передаче (см. пояснения к формуле 7.29[1]): предполагая, что ремней в передаче будет от 4 до 6, примем коэффициент Сz = 0,85.
14. Число ремней в передаче:
z = P x Cp / (PoCL x C x Cz) = 6775,872 x 1,2 / (1870,0 x 0,98 x 0,98 x 0,85 = 5,329,
где Рo = 1,87 кВт - мощность, передаваемая одним клиновым ремнем, кВт (см. табл. 7.8[1]).
Принимаем z = 6,0.
15. Скорость:
V = 0.5 x (ведущего шкива) x d1 = 0.5 x 76,131 x 0,16 = 6,091 м/c.
16. Нажатие ветви клинового ремня по формуле 7.30[1]:
F0 = 850 x P x Cр x CL / (z x V x C) +  x V2 =
850 x 6,776 x 1,2 x 0,98 / (6,0 x 6,091 x 0,98) + 0,1 x 6,0912 = 192,915 H.
где  = 0,1 Hxc2/м2 - коэффициент, учитывающий влияние центробежных сил (см. пояснения к формуле 7.30[1]).
17. Давление на валы находим по формуле 7.31[1]:
Fв = 2 x F0 x sin(/2) = 2 x 192,915 x 6,0 x sin(171,844o/2) = 2309,12 H.
18. Напряжение от силы F0 находим по формуле 7.19[1]:
1 = F0 / A = 192,915 / 81,0 = 2,382 МПа.
где A = 81,0 мм2 - площадь поперечного сечения ремня.
19. Напряжение изгиба (формулa 7.19[1]):
и = 2 x Еи x y / d1 = 100 x 3,0 / 160,0 = 1,875 МПа.
где Еи = 100 МПа - для резинотканевых ремней; y - растояние от нейтральной оси до опасного волокна сечения ремня y = 3,0.
20. Напряжение от центробежных сил (по формуле 7.19[1]):
v =  x V2 x 10-6 = 1100 x 0,0062 = 0,041 МПа.
где  = 1100 кг/м3 - плотность ремня.
21. Максимальное напряжение по формуле 7.18[1] будет:
max = 1 + и + v = 2,382 + 1,875 + 0,041 = 4,297 МПа.
Условие прочности max <= 7 МПа выполнено.
22. Проверка долговечности ремня:
Находим рабочий ресурс ремня по формуле 7.22[1]
а) базовое число циклов для данного типа ремня:
Noц = 4600000,0;
б) коэффициент, учитывающий влияние передаточного отношения;
Ci = 1.5 x U1/3 - 0.5 = 1.5 x 1,4211/3 = 1,187;
в) коэффициент, учитывающий характер нагрузки СH = 1 при постоянной нагрузке.
H0 = Noц x Lр x Ci x CH x (-1 / max)8 / (60 x  x d1 x n(ведущий шкив)) =
4600000,0 x 1500,0 x 1,187 x 1,0 x (7,0 / 4,297)8 / (60 x 3,142 x 160,0 x 727,0) =
18503,085 ч.
При среднем режиме нагрузки рабочий ресурс ремня должен быть не менее 2000 часов
Таким образом условие долговечности выполнено.
23. Ширина шкивов Вш (см. табл. 7.12[1]):
Вш = (z - 1) x e + 2 x f = (6,0 - 1) x 15,0 + 2 x 10,0 = 95,0 мм.

Расчет 2-й зубчатой цилиндрической передачи

Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. табл. 2.1-2.3[1]):
- для шестерни : сталь   : 45
  термическая обработка : улучшение
  твердость   : HB 230
- для  колеса : сталь : 45Л
  термическая обработка : нормализация
  твердость   : HB 160
Допустимые контактные напряжения (стр. 13[2]) , будут:
[]H = H lim x ZN x ZR x Zv / SH ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :
H lim b = 2 x HB + 70 .
H lim(шестерня) = 2 x 230,0 + 70 = 530,0 МПа;
H lim(колесо) = 2 x 160,0 + 70 = 390,0 МПа;
SH - коэффициент безопасности SH = 2,2; ZN - коэффициент долговечности, учитывающий влияние ресурса.
ZN = (NHG / NHE)1/6,
где NHG - число циклов, соответствующее перелому кривой усталости, определяется по средней твёрдости поверхности зубьев:
NHG = 30 x HBср2.4 <= 12 x 107
NHG(шест.) = 30 x 230,02.4 = 13972305,126
NHG(кол.) = 30 x 160,02.4 = 5848024,9
NHE = H x Nк - эквивалентное число циклов.
Nк = 60 x n x c x t
Здесь :
- n - частота вращения, об./мин.; nшест. = 501,379 об./мин.; nкол. = 159,168 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
H = 0,18 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 501,379 x 1 x 29200,0 = 878416008,0
Nк(кол.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
NHE(шест.) = 0,18 x 878416008,0 = 158114881,44
NHE(кол.) = 0,18 x 278862336,0 = 50195220,48
В итоге получаем:
ZN(шест.) = (13972305,126 / 158114881,44)1/6 = 0,667
Так как ZN(шест.)<1.0 , то принимаем ZN(шест.) = 1,0
ZN(кол.) = (5848024,9 / 50195220,48)1/6 = 0,699
Так как ZN(кол.)<1.0 , то принимаем ZN(кол.) = 1,0
ZR = 0,9 - коэффициент, учитывающий влияние шероховатости сопряжённых поверхностей зубьев.
Zv - коэффициент, учитывающий влияние окружной скорости: Zv = 1...1.15
Предварительное значение межосевого расстояния:
a* = K x (U + 1) x (Tшест. / U)1/3
где К - коэффициент поверхностной твёрдости зубьев, для данных сталей К=10, тогда:
a* = 10 x (3,15 + 1) x (122,653 / 3,15)1/3 = 140,66 мм.
Окружная скорость Vпредв. :
Vпредв. = 2 x  x a* x nшест. / (6 x 104 x (U + 1)) =
  2 x 3.142 x 140,66 x 501,379 / (6 x 104 x (3,15 + 1)) = 1,78 м/с
По найденной скорости получим Zv:
Zv = 0.85 x V0.1 = 0.85 x 1,780.1 = 0,9
Допустимые контактные напряжения:
для шестерни []H1 = 530,0 x 1,0 x 0,9 x 1,0 / 2,2 = 216,818 МПа;
для колеса   []H2 = 390,0 x 1,0 x 0,9 x 1,0 / 2,2 = 159,545 МПа;
Для косозубых колес расчетное допустимое контактное напряжение находим по формуле 3.10 гл.3[1]:
[]H = (0.5 x ( []H12 + []H22 ))1/2
Тогда расчетное допускаемое контактное напряжение будет:
[]H = (0.5 x (216,8182 + 159,5452))1/2 = 190,348 МПа.
Требуемое условие выполнено :
[]H = 190,348МПа < 1.25 x []H2 = 1.25 x 159,545 = 199,432
Допустимые напряжения изгиба (стр. 15[2]) , будут:
[]F = F lim x YN x YR x YA / SF ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем
F lim(шестерня) = 414,0 МПа;
F lim(колесо) = 288,0 МПа;
SF - коэффициент безопасности SF = 1,7; YN - коэффициент долговечности, учитывающий влияние ресурса.
YN = (NFG / NFE)1/6,
где NFG - число циклов, соответствующее перелому кривой усталости:
NFG = 4 x 106
NFE = F x Nк - эквивалентное число циклов.
Nк = 60 x n x c x t
Здесь :
- n - частота вращения, об./мин.; nшест. = 501,379 об./мин.; nкол. = 159,168 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
F = 0,065 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 501,379 x 1 x 29200,0 = 878416008,0
Nк(кол.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
NFE(шест.) = 0,065 x 878416008,0 = 57097040,52
NFE(кол.) = 0,065 x 278862336,0 = 18126051,84
В итоге получаем:
YN(шест.) = (4 x 106 / 57097040,52)1/6 = 0,642
Так как YN(шест.)<1.0 , то принимаем YN(шест.) = 1,0
YN(кол.) = (4 x 106 / 18126051,84)1/6 = 0,777
Так как YN(кол.)<1.0 , то принимаем YN(кол.) = 1,0
YR = 1,0 - коэффициент, учитывающий влияние шероховатости, переходной поверхности между зубьями.
YA - коэффициент, учитывающий влияние двустороннего приложения нагрузки (реверса). При реверсивной нагрузке для материала шестерни YA1 = 0,65. Для материала шестерни YA2 = 0,65 (стр. 16[2]).
Допустимые напряжения изгиба:
для шестерни []F1 = 414,0 x 1,0 x 1,0 x 0,65 / 1,7 = 158,294 МПа;
для колеса   []F2 = 288,0 x 1,0 x 1,0 x 0,65 / 1,7 = 110,118 МПа;
По таблице 2.5[2] выбираем 9-ю степень точности.
Уточняем предварительно найденное значение межосевого расстояния по формуле (стр. 18[2]):
a = K x a x (U + 1) x (KH x Tшест. / (ba x U x []2H))1/3 ,
где Кa = 410 - для косозубой передачи, для несимметрично расположенной цилиндрической передачи выбираем ba = 0,315; KH - коэффициент нагрузки в расчётах на контактную прочность:
KH = KHv x KH x KH
где KHv = 1,036 - коэффициент, учитывающий внутреннюю динамику нагружения (выбирается по табл. 2.6[2]); KH - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Коэффициент KH определяют по формуле:
KH = 1 + (KHo - 1) x KH
Зубья зубчатых колёс могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становиться более равномерным. Для определения коэффициента неравномерности распределения нагрузки в начальный период работы KHo предварительно вычисляем ориентировочное значение коэффициента bd:
ba = 0.5 x ba x (U + 1) =
  0.5 x 0,315 x (3,15 + 1) = 0,654
По таблице 2.7[2] KHo = 1,091. KH = 0,194 - коэффициент, учитывающий приработку зубьев (табл. 2.8[2]). Тогда:
KH = 1 + (1,091 - 1) x 0,194 = 1,018
Коэффициент KH определяют по формуле:
KH = 1 + (KHo - 1) x KH
KHo - коэффициент распределения нагрузки между зубьями в связи с погрешностями изготовления (погрешность шага зацепления и направления зуба) определяют в зависимости от степени точности по нормам плавности для косозубой передачи и для данного типа сталей колёс:
KHo = 1 + 0.25 x (nст - 5) =
1 + 0.25 x (9,0 - 5) = 2,0
Так как значение получилось большим 1.6, то принимаем KHo = 1.6
KH = 1 + (1,6 - 1) x 0,194 = 1,116
В итоге:
KH = 1,036 x 1,018 x 1,116 = 1,176
Тогда:
a = 410,0 x (3,15 + 1) x (1,176 x 122,653 / (0,315 x 3,15 x 190,3482))1/3 = 270,398 мм.
Принимаем ближайшее значение a по стандартному ряду: a = 280,0 мм.
Предварительные основные размеры колеса:
Делительный диаметр:
d2 = 2 x a x U / (U + 1) =
2 x 280,0 x 3,15 / (3,15 + 1) = 425,06 мм.
Ширина:
b2 = ba x a =
0,315 x 280,0 = 88,2 мм.
Ширину колеса после вычисления округляем в ближайшую сторону до стандартного числа (см. табл. 24.1[2]): b2 = 90,0 мм.
Максимально допустимый модуль mmax, мм, определяют из условия неподрезания зубьев у основания:
mmax = 2 x a / (17 x (U + 1)) =
2 x 280,0 / (17 x (3,15 + 1)) = 7,938 мм.
Минимально допустимый модуль mmin, мм, определяют из условия прочности:
mmin = (Km x KF x Tшест. x (U + 1)) / (a x b2 x []F)
где Km = 2.8 x 103 - для косозубых передач; []F - наименьшее из значений []F1 и []F2.
Коэффициент нагрузки при расчёте по напряжениям изгиба:
KF = KFv x KF x KF
Здесь коэффициент KFv = 1,071 - коэффициент, учитывающий внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления шестерни и колеса. Находится по табл. 2.9[2] в зависимости от степени точности по нормам плавности, окружной скорости и твёрдости рабочих поверхностей. KF - коэффициент, учитывающий неравномерность распределения напряжений у основания зубьев по ширине зубчатого венца, оценивают по формуле:
KF = 0.18 + 0.82 x KHo = 0.18 + 0.82 x 1,091 = 1,074
KF = KFo = 1,6 - коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями.
Тогда:
KF = 1,071 x 1,074 x 1,6 = 1,841
mmin = (2.8 x 103 x 1,841 x 122,653 x (3,15 + 1)) / (280,0 x 90,0 x 110,118) = 0,946 мм.
Из полученного диапазона (mmin...mmax) модулей принимаем значение m, согласуя его со стандартным: m = 1,0.
Для косозубой передачи предварительно принимаем угол наклона зубьев:  = 8,0o.
Суммарное число зубьев:
Z = 2 x a x cos() / m =
2 x 280,0 x cos(8,395o) / 1,0 = 554,55
Полученное значение Z округляем в меньшую сторону до целого числа Z = 554. После этого определяется действительное значение угла o наклона зубьев:
 = arccos(Z x m / (2 x a)) =
  arccos(554,0 x 1,0 / (2 x 280,0)) = 8,395o
Число зубьев шестерни:
z1 = Z / (U + 1) >= z1min = 17
z1 = 554 / ( 3.15 + 1) = 133,494
Принимаем z1 = 134
Коэффициент смещения x1 = 0 при z1 >= 17.
Для колеса внешнего зацепления x2 = -x1 = 0,0
Число зубьев колеса внешнего зацепления:
z2 = Z - z1 = 554 - 134 = 420
Фактическое передаточное число:
Uф = z2 / z1 = 420 / 134 = 3,134
Фактическое значение передаточного числа отличается на 0,498%, что не более, чем допустимые 4% для двухступенчатого редуктора.
Делительное межосевое расстояние:
a = 0.5 x m x (z2 + z1) / cos() = 0.5 x 1,0 x ( 420 + 134) / cos(8,395o) = 280,0 мм.
Коэффициент воспринимаемого смещения:
y = -(aw - a) / m = -(280,0 - 280,0) / 1,0 = 0,0
Диаметры колёс:
делительные диаметры:
d1 = z1 x m / cos() = 134 x 1,0 / cos(8,395o) = 135,451 мм.
d2 = 2 x a - d1 = 2 x 280 - 135,451 = 424,549 мм.
диаметры da и df окружностей вершин и впадин зубьев колёс внешнего зацепления:
da1 = d1 + 2 x (1 + x1 - y) x m = 135,451 + 2 x (1 + 0,0 - 0,0) x 1,0 = 137,451 мм.
df1 = d1 - 2 x (1.25 - x1) x m = 135,451 - 2 x (1.25 - 0,0) x 1,0 = 132,951 мм.
da2 = d2 + 2 x (1 + x2 - y) x m = 424,549 + 2 x (1 + 0,0 - 0,0) x 1,0 = 426,549 мм.
df2 = d2 - 2 x (1.25 - x2) x m = 424,549 - 2 x (1.25 - 0,0) x 1,0 = 422,049 мм.
Расчётное значение контактного напряжения:
H = Z x ((KH x Tшест. x (Uф + 1)3) / (b2 x Uф))1/2 / a <= []H
где Z = 8400 - для прямозубой передачи. Тогда:
H = 8400 x ((1,176 x 122,653 x (3,134 + 1)3) / (90,0 x 3,134))1/2 / 280,0 =
180,365 МПа <= []H = 190,348 МПа.
Силы в зацеплении:
окружная:
Ft = 2 x Tшест. / d1 = 2 x 122652,556 / 135,451 = 1811,021 H;
радиальная:
Fr = Ft x tg() / cos() = 1811,021 x tg(20o) / cos(8,395o) = 666,297 H;
осевая:
Fa = Ft x tg() = 1811,021 x tg(8,395o) = 267,259 H.
Расчётное напряжение изгиба:
в зубьях колеса:
F2 = KF x Ft x YFS2 x Y x Y / (b2 x m) <= []F2
в зубьях шестерни:
F1 = F2 x YFS1 / YFS2 <= []F1
Значения коэффициента YFS, учитывающего форму зуба и концентрацию напряжений, определяется в зависимости от приведённого числа зубьев zv и коэффициента смещения. Приведённые числа зубьев:
zv1 = z1 / cos3() = 134 / cos3(8,395o) = 138,401
zv2 = z2 / cos3() = 420 / cos3(8,395o) = 433,795
По табл. 2.10[2]:
YFS1 = 3,59
YFS2 = 3,59
Значение коэффициента Y, учитывающего угол наклона зуба, вычисляют по формуле:
Y = 1 -  / 100 = 1 - 8,395 / 100 = 0,916
Для косозубой передачи значение коэффициента, учитывающего перекрытие зубьев Ye = 0,65.
Тогда:
F2 = 1,841 x 1811,021 x 3,59 x 0,916 x 0,65 / (90,0 x 1,0) =
79,206 МПа <= []F2 = 110,118 МПа.
F1 = 79,206 x 3,59 / 3,59 =
79,206 МПа <= []F1 = 158,294 МПа.

Расчет 3-й зубчатой цилиндрической передачи

Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. табл. 2.1-2.3[1]):
- для шестерни : сталь   : 45
  термическая обработка : улучшение
  твердость   : HB 230
- для  колеса : сталь : 45
 термическая обработка : улучшение
  твердость   : HB 210
Допустимые контактные напряжения (стр. 13[2]) , будут:
[]H = H lim x ZN x ZR x Zv / SH ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :
H lim b = 2 x HB + 70 .
H lim(шестерня) = 2 x 230,0 + 70 = 530,0 МПа;
H lim(колесо) = 2 x 210,0 + 70 = 490,0 МПа;
SH - коэффициент безопасности SH = 2,2; ZN - коэффициент долговечности, учитывающий влияние ресурса.
ZN = (NHG / NHE)1/6,
где NHG - число циклов, соответствующее перелому кривой усталости, определяется по средней твёрдости поверхности зубьев:
NHG = 30 x HBср2.4 <= 12 x 107
NHG(шест.) = 30 x 230,02.4 = 13972305,126
NHG(кол.) = 30 x 210,02.4 = 11231753,462
NHE = H x Nк - эквивалентное число циклов.
Nк = 60 x n x c x t
Здесь :
- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
H = 0,18 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0
NHE(шест.) = 0,18 x 278862336,0 = 50195220,48
NHE(кол.) = 0,18 x 124491864,0 = 22408535,52
В итоге получаем:
ZN(шест.) = (13972305,126 / 50195220,48)1/6 = 0,808
Так как ZN(шест.)<1.0 , то принимаем ZN(шест.) = 1,0
ZN(кол.) = (11231753,462 / 22408535,52)1/6 = 0,891
Так как ZN(кол.)<1.0 , то принимаем ZN(кол.) = 1,0
ZR = 0,9 - коэффициент, учитывающий влияние шероховатости сопряжённых поверхностей зубьев.
Zv - коэффициент, учитывающий влияние окружной скорости: Zv = 1...1.15
Предварительное значение межосевого расстояния:
a* = K x (U + 1) x (Tшест. / U)1/3
где К - коэффициент поверхностной твёрдости зубьев, для данных сталей К=10, тогда:
a* = 10 x (2,24 + 1) x (372,93 / 2,24)1/3 = 178,24 мм.
Окружная скорость Vпредв. :
Vпредв. = 2 x  x a* x nшест. / (6 x 104 x (U + 1)) =
  2 x 3.142 x 178,24 x 159,168 / (6 x 104 x (2,24 + 1)) = 0,917 м/с
По найденной скорости получим Zv:
Zv = 0.85 x V0.1 = 0.85 x 0,9170.1 = 0,843
Допустимые контактные напряжения:
для шестерни []H1 = 530,0 x 1,0 x 0,9 x 1,0 / 2,2 = 216,818 МПа;
для колеса   []H2 = 490,0 x 1,0 x 0,9 x 1,0 / 2,2 = 200,455 МПа;
Для прямозубых колес за расчетное напряжение принимается минимальное допустимое контактное напряжение шестерни или колеса.
Тогда расчетное допускаемое контактное напряжение будет:
[]H = []H2 = 200,455 МПа.
Требуемое условие выполнено :
[]H = 200,455МПа < 1.25 x []H2 = 1.25 x 200,455 = 250,568
Допустимые напряжения изгиба (стр. 15[2]) , будут:
[]F = F lim x YN x YR x YA / SF ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем
F lim(шестерня) = 414,0 МПа;
F lim(колесо) = 378,0 МПа;
SF - коэффициент безопасности SF = 1,7; YN - коэффициент долговечности, учитывающий влияние ресурса.
YN = (NFG / NFE)1/6,
где NFG - число циклов, соответствующее перелому кривой усталости:
NFG = 4 x 106
NFE = F x Nк - эквивалентное число циклов.
Nк = 60 x n x c x t
Здесь :
- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
F = 0,065 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0
NFE(шест.) = 0,065 x 278862336,0 = 18126051,84
NFE(кол.) = 0,065 x 124491864,0 = 8091971,16
В итоге получаем:
YN(шест.) = (4 x 106 / 18126051,84)1/6 = 0,777
Так как YN(шест.)<1.0 , то принимаем YN(шест.) = 1,0
YN(кол.) = (4 x 106 / 8091971,16)1/6 = 0,889
Так как YN(кол.)<1.0 , то принимаем YN(кол.) = 1,0
YR = 1,0 - коэффициент, учитывающий влияние шероховатости, переходной поверхности между зубьями.
YA - коэффициент, учитывающий влияние двустороннего приложения нагрузки (реверса). При реверсивной нагрузке для материала шестерни YA1 = 0,65. Для материала шестерни YA2 = 0,65 (стр. 16[2]).
Допустимые напряжения изгиба:
для шестерни []F1 = 414,0 x 1,0 x 1,0 x 0,65 / 1,7 = 158,294 МПа;
для колеса   []F2 = 378,0 x 1,0 x 1,0 x 0,65 / 1,7 = 144,529 МПа;
По таблице 2.5[2] выбираем 9-ю степень точности.
Уточняем предварительно найденное значение межосевого расстояния по формуле (стр. 18[2]):
a = K x a x (U + 1) x (KH x Tшест. / (ba x U x []2H))1/3 ,
где Кa = 450 - для прямозубой передачи, для несимметрично расположенной цилиндрической передачи выбираем ba = 0,315; KH - коэффициент нагрузки в расчётах на контактную прочность:
KH = KHv x KH x KH
где KHv = 1,06 - коэффициент, учитывающий внутреннюю динамику нагружения (выбирается по табл. 2.6[2]); KH - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Коэффициент KH определяют по формуле:
KH = 1 + (KHo - 1) x KH
Зубья зубчатых колёс могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становиться более равномерным. Для определения коэффициента неравномерности распределения нагрузки в начальный период работы KHo предварительно вычисляем ориентировочное значение коэффициента bd:
ba = 0.5 x ba x (U + 1) =
  0.5 x 0,315 x (2,24 + 1) = 0,51
По таблице 2.7[2] KHo = 1,067. KH = 0,174 - коэффициент, учитывающий приработку зубьев (табл. 2.8[2]). Тогда:
KH = 1 + (1,067 - 1) x 0,174 = 1,012
Коэффициент KH определяют по формуле:
KH = 1 + (KHo - 1) x KH
KHo - коэффициент распределения нагрузки между зубьями в связи с погрешностями изготовления (погрешность шага зацепления и направления зуба) определяют в зависимости от степени точности по нормам плавности для прямозубой передачи:
KHo = 1 + 0.06 x (nст - 5) =
1 + 0.06 x (9,0 - 5) = 1,24
KH = 1 + (1,24 - 1) x 0,174 = 1,042
В итоге:
KH = 1,06 x 1,012 x 1,042 = 1,117
Тогда:
a = 450,0 x (2,24 + 1) x (1,117 x 372,93 / (0,315 x 2,24 x 200,4552))1/3 = 357,111 мм.
Принимаем ближайшее значение a по стандартному ряду: a = 360,0 мм.
Предварительные основные размеры колеса:
Делительный диаметр:
d2 = 2 x a x U / (U + 1) =
2 x 360,0 x 2,24 / (2,24 + 1) = 497,778 мм.
Ширина:
b2 = ba x a =
0,315 x 360,0 = 113,4 мм.
Ширину колеса после вычисления округляем в ближайшую сторону до стандартного числа (см. табл. 24.1[2]): b2 = 110,0 мм.
Максимально допустимый модуль mmax, мм, определяют из условия неподрезания зубьев у основания:
mmax = 2 x a / (17 x (U + 1)) =
2 x 360,0 / (17 x (2,24 + 1)) = 13,072 мм.
Минимально допустимый модуль mmin, мм, определяют из условия прочности:
mmin = (Km x KF x Tшест. x (U + 1)) / (a x b2 x []F)
где Km = 3.4 x 103 - для прямозубых передач; []F - наименьшее из значений []F1 и []F2.
Коэффициент нагрузки при расчёте по напряжениям изгиба:
KF = KFv x KF x KF
Здесь коэффициент KFv = 1,018 - коэффициент, учитывающий внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления шестерни и колеса. Находится по табл. 2.9[2] в зависимости от степени точности по нормам плавности, окружной скорости и твёрдости рабочих поверхностей. KF - коэффициент, учитывающий неравномерность распределения напряжений у основания зубьев по ширине зубчатого венца, оценивают по формуле:
KF = 0.18 + 0.82 x KHo = 0.18 + 0.82 x 1,067 = 1,055
KF = KFo = 1,24 - коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями.
Тогда:
KF = 1,018 x 1,055 x 1,24 = 1,331
mmin = (3.4 x 103 x 1,331 x 372,93 x (2,24 + 1)) / (360,0 x 110,0 x 144,529) = 0,955 мм.
Из полученного диапазона (mmin...mmax) модулей принимаем значение m, согласуя его со стандартным: m = 3,0.
Для прямозубой передачи предварительно принимаем угол наклона зубьев:  = 0o.
Суммарное число зубьев:
Z = 2 x a x cos() / m =
2 x 360,0 x cos(0,0o) / 3,0 = 240,0
Полученное значение Z округляем в меньшую сторону до целого числа Z = 240. После этого определяется действительное значение угла o наклона зубьев:
 = arccos(Z x m / (2 x a)) =
  arccos(240,0 x 3,0 / (2 x 360,0)) = 0,0o
Число зубьев шестерни:
z1 = Z / (U + 1) >= z1min = 17
z1 = 240 / ( 2.24 + 1) = 74,074
Принимаем z1 = 75
Коэффициент смещения x1 = 0 при z1 >= 17.
Для колеса внешнего зацепления x2 = -x1 = 0,0
Число зубьев колеса внешнего зацепления:
z2 = Z - z1 = 240 - 75 = 165
Фактическое передаточное число:
Uф = z2 / z1 = 165 / 75 = 2,2
Фактическое значение передаточного числа отличается на 1,786%, что не более, чем допустимые 4% для двухступенчатого редуктора.
Делительное межосевое расстояние:
a = 0.5 x m x (z2 + z1) / cos() = 0.5 x 3,0 x ( 165 + 75) / cos(0,0o) = 360,0 мм.
Коэффициент воспринимаемого смещения:
y = -(aw - a) / m = -(360,0 - 360,0) / 3,0 = 0,0
Диаметры колёс:
делительные диаметры:
d1 = z1 x m / cos() = 75 x 3,0 / cos(0,0o) = 225,0 мм.
d2 = 2 x a - d1 = 2 x 360 - 225,0 = 495,0 мм.
диаметры da и df окружностей вершин и впадин зубьев колёс внешнего зацепления:
da1 = d1 + 2 x (1 + x1 - y) x m = 225,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 231,0 мм.
df1 = d1 - 2 x (1.25 - x1) x m = 225,0 - 2 x (1.25 - 0,0) x 3,0 = 217,5 мм.
da2 = d2 + 2 x (1 + x2 - y) x m = 495,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 501,0 мм.
df2 = d2 - 2 x (1.25 - x2) x m = 495,0 - 2 x (1.25 - 0,0) x 3,0 = 487,5 мм.
Расчётное значение контактного напряжения:
H = Z x ((KH x Tшест. x (Uф + 1)3) / (b2 x Uф))1/2 / a <= []H
где Z = 9600 - для прямозубой передачи. Тогда:
H = 9600 x ((1,117 x 372,93 x (2,2 + 1)3) / (110,0 x 2,2))1/2 / 360,0 =
200,286 МПа <= []H = 200,455 МПа.
Силы в зацеплении:
окружная:
Ft = 2 x Tшест. / d1 = 2 x 372929,696 / 225,0 = 3314,931 H;
радиальная:
Fr = Ft x tg() / cos() = 3314,931 x tg(20o) / cos(0,0o) = 1206,536 H;
осевая:
Fa = Ft x tg() = 3314,931 x tg(0,0o) = 0,0 H.
Расчётное напряжение изгиба:
в зубьях колеса:
F2 = KF x Ft x YFS2 x Y x Y / (b2 x m) <= []F2
в зубьях шестерни:
F1 = F2 x YFS1 / YFS2 <= []F1
Значения коэффициента YFS, учитывающего форму зуба и концентрацию напряжений, определяется в зависимости от приведённого числа зубьев zv и коэффициента смещения. Приведённые числа зубьев:
zv1 = z1 / cos3() = 75 / cos3(0,0o) = 75,0
zv2 = z2 / cos3() = 165 / cos3(0,0o) = 165,0
По табл. 2.10[2]:
YFS1 = 3,605
YFS2 = 3,59
Значение коэффициента Y, учитывающего угол наклона зуба, вычисляют по формуле:
Y = 1 -  / 100 = 1 - 0,0 / 100 = 1,0
Для прямозубой передачи для 9-й точности значение коэффициента, учитывающего перекрытие зубьев Ye = 1.
Тогда:
F2 = 1,331 x 3314,931 x 3,59 x 1,0 x 1,0 / (110,0 x 3,0) =
47,997 МПа <= []F2 = 144,529 МПа.
F1 = 47,997 x 3,605 / 3,59 =
48,198 МПа <= []F1 = 158,294 МПа.
ПРЕДВАРИТЕЛЬНЫЙ РАСЧЁТ ВАЛОВ
Предварительный расчёт валов проведём на кручение по пониженным допускаемым напряжениям.
Диаметр вала при допускаемом напряжении [кр] = 20 МПа вычисляем по формуле 8.16[1]:
dв >= (16 x Tк / ( x [к]))1/3
В е д у щ и й в а л.
dв = (16 x 122652,556 / (3,142 x 25))1/3 = 29,235 мм.
Под 1-й элемент (ведомый) выбираем диаметр вала: 36,0 мм.
Под 2-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.
Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
2 - й в а л.
dв = (16 x 372929,696 / (3,142 x 25))1/3 = 42,353 мм.
Под 1-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
Под 2-й элемент (ведомый) выбираем диаметр вала: 55,0 мм.
Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.
Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
В ы х о д н о й в а л.
dв = (16 x 806333,672 / (3,142 x 25))1/3 = 54,766 мм.
Под 1-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.
Под 2-й элемент (ведомый) выбираем диаметр вала: 70,0 мм.
Под 3-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.
Под свободный (присоединительный) конец вала выбираем диаметр вала: 60,0 мм.
Диаметры участков валов назначаем исходя из конструктивных соображений.
КОНСТРУКТИВНЫЕ РАЗМЕРЫ ШЕСТЕРЕН И КОЛЁС
ВЕДУЩИЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 48,0 = 72,0 мм.
Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 48,0 = 57,6 мм = 95,0 мм.Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10,0 мм.
где h = 8,7 мм - глубина канавки под ремень от делительного диаметра.
Внутренний диаметр обода:
Dобода = d1 - 2 x o = 160,0 - 2 x 10,0 = 140,0 мм = 122,6 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (122,6 + 72,0) = 97,3 мм = 97,0 мм
где Doбода = 122,6 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (122,6 + 72,0) / 4 = 12,65 мм = 13,0 мм.
ВЕДОМЫЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 36,0 = 54,0 мм.
Длина ступицы: Lступ = (1...1,5) x dвала = 1,2 x 36,0 = 43,2 мм = 95,0 мм.Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10,0 мм.
Внутренний диаметр обода:
Dобода = d2 - 2 x o = 224,0 - 2 x 10,0 = 204,0 мм = 186,6 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (186,6 + 54,0) = 120,3 мм = 120,0 мм
где Doбода = 186,6 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (186,6 + 54,0) / 4 = 33,15 мм = 33,0 мм.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 2-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 95,0 мм.
Толщина обода: о = 2,2 x mn + 0,05 x b1 = 2,2 x 1,0 + 0,05 x 1,0 = 6,95 мм = 7,0 мм.
где b1 = 95,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (7,0 + 0,5 x (75,0 - 50,0)) = 9,75 мм = 24,0 мм.
Внутренний диаметр обода:
Dобода = Df1 - 2 x o = 132,951 - 2 x 7,0 = 118,951 мм = 119,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (119,0 + 75,0) = 97,0 мм = 98,0 мм
где Doбода = 119,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (119,0 + 75,0) / 4 = 11,0 мм
Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм
Округляем по номинальному ряду размеров: n = 1,0 мм.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 2-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 55,0 = 82,5 мм. = 82,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 55,0 = 44,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 90,0 мм.
Толщина обода: о = 2,2 x mn + 0,05 x b2 = 2,2 x 1,0 + 0,05 x 1,0 = 6,7 мм = 7,0 мм.
где b2 = 90,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (7,0 + 0,5 x (82,0 - 55,0)) = 10,25 мм = 22,0 мм.
Внутренний диаметр обода:
Dобода = Df2 - 2 x o = 422,049 - 2 x 7,0 = 408,049 мм = 408,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (408,0 + 82,0) = 245,0 мм = 246,0 мм
где Doбода = 408,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (408,0 + 82,0) / 4 = 81,5 мм = 82,0 мм.
Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм
Округляем по номинальному ряду размеров: n = 1,0 мм.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 3-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 115,0 мм.
Толщина обода: о = 2,2 x mn + 0,05 x b1 = 2,2 x 3,0 + 0,05 x 3,0 = 12,35 мм = 12,0 мм.
где b1 = 115,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (12,0 + 0,5 x (75,0 - 50,0)) = 12,25 мм = 29,0 мм.
Внутренний диаметр обода:
Dобода = Df1 - 2 x o = 217,5 - 2 x 12,0 = 193,5 мм = 194,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (194,0 + 75,0) = 134,5 мм = 135,0 мм
где Doбода = 194,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (194,0 + 75,0) / 4 = 29,75 мм = 30,0 мм.
Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм
Округляем по номинальному ряду размеров: n = 2,0 мм.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 3-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 70,0 = 105,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 70,0 = 56,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 110,0 мм.
Толщина обода: о = 2,2 x mn + 0,05 x b2 = 2,2 x 3,0 + 0,05 x 3,0 = 12,1 мм = 12,0 мм.
где b2 = 110,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (12,0 + 0,5 x (105,0 - 70,0)) = 14,75 мм = 28,0 мм.
Внутренний диаметр обода:
Dобода = Df2 - 2 x o = 487,5 - 2 x 12,0 = 463,5 мм = 464,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (464,0 + 105,0) = 284,5 мм = 285,0 мм
где Doбода = 464,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (464,0 + 105,0) / 4 = 89,75 мм = 90,0 мм.
Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм
Округляем по номинальному ряду размеров: n = 2,0 мм.
ПРОВЕРКА ПРОЧНОСТИ ШПОНОЧНЫХ СОЕДИНЕНИЙ
ВЕДУЩИЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
см = 2 x Т / (dвала x (l - b) x (h - t1)) =
  2 x 89002,493 / (48,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 13,941 МПа <= [см]
где Т = 89002,493 Нxмм - момент на валу; dвала = 48,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
ср = 2 x Т / (dвала x (l - b) x b) =
  2 x 89002,493 / (48,0 x (90,0 - 14,0) x 14,0) = 3,485 МПа <= [ср]
Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ВЕДОМЫЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 10x8. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
см = 2 x Т / (dвала x (l - b) x (h - t1)) =
  2 x 122652,556 / (36,0 x (90,0 - 10,0) x (8,0 - 5,0)) = 28,392 МПа <= [см]
где Т = 122652,556 Нxмм - момент на валу; dвала = 36,0 мм - диаметр вала; h = 8,0 мм - высота шпонки; b = 10,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
ср = 2 x Т / (dвала x (l - b) x b) =
  2 x 122652,556 / (36,0 x (90,0 - 10,0) x 10,0) = 8,518 МПа <= [ср]
Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
см = 2 x Т / (dвала x (l - b) x (h - t1)) =
  2 x 122652,556 / (50,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 18,444 МПа <= [см]
где Т = 122652,556 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
ср = 2 x Т / (dвала x (l - b) x b) =
  2 x 122652,556 / (50,0 x (90,0 - 14,0) x 14,0) = 4,611 МПа <= [ср]
Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 16x10. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
см = 2 x Т / (dвала x (l - b) x (h - t1)) =
  2 x 372929,696 / (55,0 x (80,0 - 16,0) x (10,0 - 6,0)) = 52,973 МПа <= [см]
где Т = 372929,696 Нxмм - момент на валу; dвала = 55,0 мм - диаметр вала; h = 10,0 мм - высота шпонки; b = 16,0 мм - ширина шпонки; l = 80,0 мм - длина шпонки; t1 = 6,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
ср = 2 x Т / (dвала x (l - b) x b) =
  2 x 372929,696 / (55,0 x (80,0 - 16,0) x 16,0) = 13,243 МПа <= [ср]
Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
см = 2 x Т / (dвала x (l - b) x (h - t1)) =
  2 x 372929,696 / (50,0 x (110,0 - 14,0) x (9,0 - 5,5)) = 44,396 МПа <= [см]
где Т = 372929,696 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 110,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
ср = 2 x Т / (dвала x (l - b) x b) =
  2 x 372929,696 / (50,0 x (110,0 - 14,0) x 14,0) = 11,099 МПа <= [ср]
Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 20x12. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
см = 2 x Т / (dвала x (l - b) x (h - t1)) =
  2 x 806333,672 / (70,0 x (100,0 - 20,0) x (12,0 - 7,5)) = 63,995 МПа <= [см]
где Т = 806333,672 Нxмм - момент на валу; dвала = 70,0 мм - диаметр вала; h = 12,0 мм - высота шпонки; b = 20,0 мм - ширина шпонки; l = 100,0 мм - длина шпонки; t1 = 7,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
ср = 2 x Т / (dвала x (l - b) x b) =
  2 x 806333,672 / (70,0 x (100,0 - 20,0) x 20,0) = 14,399 МПа <= [ср]
Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
КОНСТРУКТИВНЫЕ РАЗМЕРЫ КОРПУСА РЕДУКТОРА
Для редукторов толщину стенки корпуса, отвечающую требованиям технологии литья, необходимой прочности и жёсткости корпуса, вычисляют по формуле:
 = 1.3 x (T(тихоходная ступень))1/4 = 1.3 x 806,3341/4 = 6,927 мм
Так как должно быть  >= 8.0 мм, принимаем  = 8.0 мм.
В местах расположения обработанных платиков, приливов, бобышек, во фланцах толщину стенки необходимо увеличить примерно в полтора раза:
1 = 1.5 x  = 1.5 x 8,0 = 12,0 мм
Плоскости стенок, встречающиеся под прямым углом, сопрягают радиусом r = 0.5 x  = 0.5 x 8,0 = 4,0 мм. Плоскости стенок, встречающиеся под тупым углом, сопрягают радиусом R = 1.5 x  = 1.5 x 8,0 = 12,0 мм.
Толщина внутренних ребер из-за более медленного охлаждения металла должна быть равна 0,8 x  = 0,8 x 8,0 = 6,4 мм.
Учитывая неточности литья, размеры сторон опорных платиков для литых корпусов должны быть на 2...4 мм больше размеров опорных поверхностей прикрепляемых деталей.
Обрабатываемые поверхности выполняются в виде платиков, высота h которых принимается h = (0,4...0,5) x . Принимаем h = 0,5 x 8,0 = 4,0 мм.
Толщина стенки крышки корпуса 3 = 0,9 x  = 0,9 x 6,927 = 6,235 мм. Округляя, получим &...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2011.02.09
Просмотров: 1557

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434