Главная / Рефераты / Рефераты по астрономии
Реферат: Законы Кеплера
Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
Мазуров Алексей, 11 «Б». Важную роль в формировании представления о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571-1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированного позднее Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой- окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную формулу планетных орбит, а также закономерность изменения скорости движения планет при их движении вокруг Солнца. В своих поисках Кеплер исходил из убеждения, что «миром правит число», высказанного ещё Пифагором. Он искал соотношения между различными величинами, характеризующими движение планет, - размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически. Он пытался сопоставить характеристики движения планет с законами музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников и т. д. Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающей положение планеты на небесной сфере, к системе координат, указывающих её положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге. Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, показанный на рис.1. Пусть, нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты - его прямое восхождение ?1, которое выражается углом ?Т1М1, где Т1- положение Земли на орбите в этот момент, а М1- положение Марса. Очевидно, что спустя 687 суток (таков звёздный период обращения Марса) планета придёт в ту же точку орбиты. Если определить прямое восхождение планеты на эту дату, то, как видно из рис.1, можно указать положение планеты в пространстве, точнее, в плоскости её орбиты. Земля в этот момент находится в точке Т2, и, следовательно, угол ?Т2М2 есть не что иное, как прямое восхождение Марса - ?2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил ещё целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты. Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этом радиус-вектор планеты за равные промежутки времени описывает равные площади. Впоследствии эта закономерность получила название второго закона Кеплера. Это закон, который часто называют законом площадей, иллюстрируется рисунком 2. Радиус-вектором называют переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1, ВВ1, СС 1- дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны. Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остаётся неизменной при любых движениях тел этой системы. Поэтому сумма потенциальной и кинетической энергий планеты, которая движется вокруг Солнца, остаётся неизменной во всех точках орбиты и равна полной энергии. По мере её приближения к Солнцу возрастает скорость - увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная. Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их движение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений: считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках движения планеты вычисленные координаты расходятся с действительными (из-за ошибок наблюдений) на 8’, или считать, что наблюдения таких ошибок не содержат, а орбита планеты не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера. Каждая планета обращается вокруг Солнца по эллипсу, в одном из ф...
ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!
Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь на сайте:
|
|
|
Добавлено: 2011.08.17
Просмотров: 2025
|
Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21
При использовании материалов сайта, активная ссылка на AREA7.RU обязательная! |