Главная / Рефераты / Рефераты по биологии

Реферат: Влияние гидродинамического режима движения жидких потоков без и с протеканием быстрой химической реакции на внешний теплообмен


Влияние гидродинамического режима движения жидких потоков без и с протеканием быстрой химической реакции на внешний теплообмен в трубчатых каналах

Захаров В.П., Минскер К.С.
В процессе сернокислотного алкилирования изопарафинов олефинами, наряду с основной реакцией протекают побочные процессы, приводящие к получению тяжелых углеводородов. К таким процессам можно отнести реакцию полимеризации с получением высокомолекулярных продуктов, реакцию деструктивного алкилирования, реакции, протекающие с образованием нормальных парафинов, нафтенов, автоалкилирования изопарафинов и др. [1]. Это в значительной степени отражается на выходе и качестве алкилата.
При движении жидких потоков в трубчатых каналах распространение тепла в основном происходит за счет теплопроводности и вынужденной конвекции. Перенос тепла тем интенсивнее, чем более турбулентно движется жидкий поток в трубчатых аппаратах струйного типа, т.е. чем энергичнее осуществляется перемешивание жидкости. Для интенсификации конвективного теплообмена желательно, чтобы тепловой пограничный слой был возможно тоньше [1]. С развитием турбулентности потока пограничный слой становится настолько тонким, что конвекция начинает оказывать преобладающее влияние на теплообмен. Это особенно актуально при проведении быстрых экзотермических химических реакций в реакторах нового типа - трубчатых турбулентных аппаратах, работающих в режиме квазиидеального вытеснения в турбулентных потоках [2], отличающихся от известных типов аппаратов смешения и вытеснения.
Трубчатые аппараты характеризуются тем, что в них можно формировать любые гидродинамические режимы движения потоков: ламинарный (Re<2300), переходный (2500<Re<7000) и турбулентный (Re>35000) (рис. 1), отличающиеся  различной интенсивностью тепло- и массообменных процессов.
Целью работы являлся анализ  эффективности теплообмена в однотрубных и кожухотрубных аппаратах при движении жидких потоков  без и с протеканием быстрой экзотермической химической  реакции при различных гидродинамических режимах.
При проведении быстрых экзотермических химических реакций (kі102±1 л/мольЧс) в трубчатых аппаратах струйного типа любой конструкции задача расчета при внешнем теплосъеме упрощается, ибо съем тепла в зоне реакции практически невозможен, так как характерное время реакции tх<0,1-0,001 и зона реакции Lх<1 мм. Поэтому внешний теплосъем реализуется только после завершения быстрого химического процесса, и трубчатые аппараты в производстве работают практически как теплообменники, что определяет дополнительный приоритет в выборе трубчатой конструкции реакторов при проведении весьма быстрых химических процессов по сравнению с объемными аппаратами смешения [3].
В общем случае, внешний теплосъем зависит от тепловых (удельной теплоемкости Ср, теплопроводности l, коэффициента объемного расширения b) и физико-химических свойств (плотности r, вязкости m), а также режима течения жидкого потока (скорости движения V, коэффициента турбулентной диффузии Dт, критерия Re) и геометрических параметров трубчатого аппарата (его радиуса R, длины L,  конструкции). 
При включении внешнего охлаждения при любом режиме движения жидких потоков (в предположении, что температура внутренней стенки трубчатого аппарата Тх постоянна) перепад температуры DТ=Тм-Тр по длине зоны охлаждения Lохл в аппарате от максимальной температуры Тм до требуемой температуры в аппарате Тр определяется соотношением (1) [4]:
.   (1)
Здесь Тм=Т0 при течении жидких потоков без химической реакции и Тм=Т0+DТад в случае протекания быстрой химической реакции; Т0 – начальная температура жидких потоков, подаваемых в трубчатый аппарат; DТад – адиабатический подъем температуры в зоне реакции; a-коэффициент теплоотдачи (Вт/м2Чград).
Решая (1) относительно Lохл, можно оценить минимальную длину зоны охлаждения при внешнем теплосъеме, необходимую для поддержания в трубчатом аппарате заданной температуры Тр:
(2)
При расчете эффективности теплосъема в реальных условиях определяющее значение имеет коэффициент теплоотдачи a, зависящий от гидродинамического режима работы аппарата: ламинарный, переходный, турбулентный.
При ламинарном режиме течения жидкости в трубчатых каналах (Re<2300) [1]:
(3)
где mх, lх, Срх – вязкость, теплопроводность и теплоемкость потока при температуре стенки Тх.
При переходном режиме (Re~2500-7000) [5]:
  (5)
откуда
  (6)
При турбулентном режиме течения жидкости в трубчатых каналах (Re>35000) [5]:
(7)
и
  (8)
При переходе от ламинарного к турбулентному режиму течения жидких потоков при условии постоянства производительности процесса W (выбрано W=VЧpЧR2=10,3 м3/ч), длина зоны охлаждения заметно уменьшается (рис. 1).
Как следствие, и это важно, увеличение численных значений Re с 2300 до 4Ч104 при постоянной производительности процесса приводит к снижению объема трубчатых теплообменных аппаратов, в частности, для воды в 1000 раз, для хлорэтила (при протекании быстрой химической реакции гидрохлорирования этилена в трубчатом аппарате [2]) в 300 раз. При неустойчивом (переходном) режиме работы трубчатых аппаратов необходимая длина зоны охлаждения Lохл резко возрастает даже по сравнению с ламинарным режимом течения жидких потоков, что всегда следует иметь в виду при эксплуатации теплообменной аппаратуры. Кроме того, при проведении быстрых химических процессов (катионная полимеризация изобутилена, нейтрализация кислых сред и др.) в трубчатых аппаратах длина зоны реакции Lхим, как правило, не превышает нескольких см., а часто и долей см. (для гидрохлорирования этилена Lхим»10-4 м). Для осуществления подобных процессов можно рекомендовать использование трубчатых аппаратов с соотношением L/R<100, что определяет повышение эффективности внешнего теплообмена (коэффициента теплоотдачи) до 1,65 раз [1].

Рис. 1 Зависимость длины зоны охлаждения Lохл и коэффициента теплоотдачи a от гидродинамического режима работа трубчатого аппарата: для воды (ґ) (теплообмен) и хлорэтила (·) (теплообмен после протекания химической реакции жидкофазного гидрохлорирования этилена) при постоянной производительности (10,34 м3/ч). (Тм=374 К; Т0=278 К; Тр=293 К; Тх=283 К).
Дополнительным преимуществом работы теплообменной аппаратуры при внешнем теплосъеме в трубчатых каналах при турбулентном режиме является возможность формирования в аппарате автомодельного режима движения жидких потоков по отношению к Re [1, 6].
В автомодельном режиме работы трубчатых аппаратов осредненные характеристики турбулентного потока (турбулентная энергия К, ее диссипация e, коэффициент турбулентной диффузии Dт и др.) не зависят от значений вязкости движущегося потока, что создает благоприятные условия для осуществления как быстрых химических, так и теплообменных процессов. Заметного снижения значения ...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2012.03.25
Просмотров: 1291

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!