Главная / Рефераты / Рефераты по экономико-математическому моделированию

Реферат: Построение экономической модели с использованием симплекс-метода


Курсовая работа
Тема: Построение экономической модели с использованием симплекс-метода .
Работу выполнил студент УТФ-4-2
Кулаков О. А.
Оглавление .
Введение
Моделирование как метод научного познания.
Введение в симплекс-метод
Словесное описание
Математическое описание
Ограничения
Переменные
Целевая функция
Симплекс-метод .
Представление пространства решений стандартной задачи линейного программирования
Вычислительные процедуры симплекс-метода
Анализ результатов .
Оптимальное решение
Статус ресурсов
Ценность ресурса
Максимальное изменение запаса ресурса
Максимальное изменение коэффициентов удельной прибыли ( стоимости )
Моделирование как метод научного познания.
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний : техническое конструирование , строительство и архитектуру , астрономию , физику , химию , биологию и , наконец , общественные науки .
Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в . Однако методология моделирования долгое время развивалась независимо отдельными науками . Отсутствовала единая система понятий, единая терминология . Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания .
Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений . Рассмотрим только такие "модели", которые являются инструментами получения знаний .
Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале .
Под моделирование понимается процесс построения , изучения и применения моделей . Оно тесно связано с такими категориями , как абстракция , аналогия , гипотеза и др . Процесс моделирования обязательно включает и построение абстракций , и умозаключения по аналогии, и конструирование научных гипотез.
Главная особенность моделирования в том , что это метод опосредованного познания с помощью объектов-заместителей . Модель выступает как своеобразный инструмент познания , который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект . Именно эта особенность метода моделирования определяет специфические формы использования абстракций , аналогий , гипотез , других категорий и методов познания .
Необходимость использования метода моделирования определяется тем, что многие объекты ( или проблемы , относящиеся к этим объектам ) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.
Моделирование - циклический процесс . Это означает , что за первым четырехэтапным циклом может последовать второй , третий и т.д. При этом знания об исследуемом объекте расширяются и точняются, а исходная модель постепенно совершенствуется . Недостатки , обнаруженные после первого цикла моделирования , бусловленные малым знанием объекта и ошибками в построении модели , можно исправить в последующих циклах . В методологии моделирования , таким образом , заложены большие возможности саморазвития .
Словесное описание
Фирма , производящая некоторую продукцию осуществляет её рекламу двумя способами через радиосеть и через телевидение . Стоимость рекламы на радио обходится фирме в 5 S , а стоимость телерекламы - в 100S за минуту .
Фирма готова тратить на рекламу по 1000 S в месяц . Так же известно , что фирма готова рекламировать свою продукцию по радио по крайней мере в 2 раза чаще , чем по телевидению .
Опыт предыдущих лет показал , что телереклама приносит в 25 раз больший сбыт продукции нежели радиореклама .
Задача заключается в правильном распределении финансовых средств фирмы .
Математическое описание .

X1 - время потраченное на радиорекламу .
X2 - время потраченное на телерекламу .
Z - искомая целевая функция , оражающая максимальный сбыт от 2-ух видов рекламы .
X1=>0 , X2=>0 , Z=>0 ;
Max Z = X1 + 25X2 ;
5X1 + 100X2 0
Использование графического способа удобно только при решении задач ЛП с двумя переменными . При большем числе переменных необходимо применение алгебраического аппарата . В данной главе рассматривается общий метод решения задач ЛП , называемый симплекс-методом .
Информация , которую можно получить с помощью симплекс-метода , не ограничивается лишь оптимальными значениями переменных . Симплекс-метод фактически позволяет дать экономическую интерепритацию полученного решения и провести анализ модели на чувствительность .
Процесс решения задачи линейного программирования носит итерационный характер : однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор , пока не будет получено оптимальное решение . Процедуры , реализуемые в рамках симплекс-метода , требуют применения вычислительных машин - мощного средства решения задач линейного программирования .
Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач . В данной главе рассматриваются итерационные процедуры такого рода , обеспечивающие решение задач с помощью моделей исследования операций .
В гл 2 было показано , что правая и левая части ограничений линейной модели могут быть связаны знаками . Кроме того , переменные , фигурирующие в задачах ЛП , могут быть неотрицательными или не иметь ограничения в знаке . Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме , которую назовем стандатрной формой линейных оптимизационных моделей . При стандартной форме линейной модели
1. Все ограничения записываются в виде равенств с неотрицательной правой частью ;
2. Значения всех переменных модели неотрицательны ;
3. Целевая функция подлежит максимизации или минимизации .
Покажем , каким образом любую линейную модель можно привести к стандартной
.
Ограничения
1. Исходное ограничение , записанное в виде неравенства типа ) , можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения ( вычитая избыточную переменную из левой части ) .
Например , в левую часть исходного ограничения
5X1 + 100X2 0 , в результате чего исходное неравенство обращается в равенство
5X1 + 100X2 + S1 = 1000 , S1 => 0
Если исходное ограничение определяет расход некоторого ресурса , переменную
S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса .
Рассмотрим исходное ограничение другого типа :
X1 - 2X2 => 0
Так как левая часть этого ограничения не может быть меньше правой , для обращения исходного неравенства в равенство вычтем из его левой части избыточную переменную S2 > 0 . В результате получим
X1 - 2X2 - S2 = 0 , S2 => 0
2. Правую часть равенства всегда можно сделать неотрицательной , умножая оби части на -1 .
Например равенство X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 +
S2 = 0
3. Знак неравенства изменяется на противоположный при умножении обеих частей на -1 .
Например можно вместо 2 < 4 записать - 2 > - 4 , неравенство X1 - 2X2
0
Переменные
Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных :
Yi=Yi’-Yi’’, где Yi’,Yi’’=>0.
Такую подстановку следует использовать во всех ограничениях , которые содержат исходную переменную Yi , а также в выражении для целевой функции .
Обычно находят решение задачи ЛП , в котором фигурируют переменные
Yi’ и Yi’’ , а затем с помощью обратной подстановки определяют величину Yi
. Важная особенность переменных Yi’ и Yi’’ состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это позволяет рассматривать Yi’ как остаточную переменную , а Yi’’ - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответсвующих преобразований в задаче 2.30
Целевая функция
Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации .
В некоторых случаях оказывается полезным изменить исходную целевую функцию
.
Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции
Z = X1 + 25X2 эквивалентна минимизации функции
( -Z ) = -X1 - 25X2
Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны .
Симплекс-метод .
В вычислительной схеме симплекс-метода реализуется упорядоченный процесс , при котором , начиная с некоторой исходной допустимой угловой точки ...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2012.06.26
Просмотров: 1578

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!