Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Основные физико-механические свойства горных пород, необходимые для проектирования и строительства - Рефераты по географии - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по географии

Реферат: Основные физико-механические свойства горных пород, необходимые для проектирования и строительства



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323

. Методы определения абсолютного и относительного возраста пород

Королев Илья Николаевич

1. Объясните значение инженерной геологии для промышленного и гражданского строительства

Инженерная геология - отрасль геологии, изучающая верхние горизонты земной коры и динамику последней в связи с инженерно-строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех. процессов и явлений, возникающих при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.

Трудно переоценить значение инженерно-геологических изысканий для строительства любого по величине и значимости сооружения. Дороже становится дом, возведенный на недостаточно исследованном участке. Ведь под зданием могут оказаться подземные воды, торф, просадочные грунты. В результате - “кривые” стены, трещины, сырость и плесень в подвалах и прочее, что приносит определенные сложности при эксплуатации зданий. Вода способствует растворяемости различных химических соединений, в том числе и агрессивных, что приводит к неблагоприятному воздействию на цементный раствор, каменную кладку, бетон. И хотя процесс разрушения фундамента незаметен, его последствия ощутимо сказываются на здании: нарушается целостность несущих конструкций, плесень и грибок проникают через подвал на верхние этажи и “заражают” в конце концов, весь дом. Дверные коробки и оконные рамы деформируются, что становится причиной появления щелей и зазоров, через которые дом начинает ускоренно терять тепло. Паркет или любое другое напольное покрытие под воздействием сырости коробится. Ремонт становится неотвратимым. А он влечет новые затраты, причем без гарантии, что восстановительные процессы не придется повторять снова и снова. Все это, в большинстве своем, возможно лишь при некачественной или несвоевременной оценке инженерно-геологических условий стройплощадки.

Инженерно-геологические изыскания для строительства обеспечивают комплексное изучение природных и техногенных условий территории (региона, района, площадки, участка, трассы) объектов строительства, составление прогнозов взаимодействия этих объектов с окружающей средой, обоснование их инженерной защиты и безопасных условий жизни населения. На основе материалов инженерных изысканий для строительства осуществляется разработка предпроектной документации, в том числе градостроительной документации и обоснований инвестиций в строительство, проектов и рабочей документации строительства предприятий, зданий и сооружений, включая расширение, реконструкцию, техническое перевооружение, эксплуатацию и ликвидацию объектов, ведение государственных кадастров и информационных систем поселений, а также рекомендаций для принятия экономически, технически, социально и экологически обоснованных проектных решений.

Топографо-геологические изыскания. Наличие материалов инженерно-геологических и геодезических изысканий на площадке проектируемого дома позволяет избежать многих ошибок проектирования, строения и прокладки наружных инженерных систем: правильно расположить все строения на отведенном участке, вспомогательные помещения внутри коттеджа, которые требуют подачи воды и отвода хозфекальных стоков, организовать отвод поверхностных вод с учетом рельефа местности.

При обустройстве автономного источника водоснабжения (колодец или скважина) и местных очистных сооружений без инженерно-геодезических и гидрогеологических изысканий просто нельзя обойтись. Изыскания проводят для определения несущих характеристик грунтов, состава и уровня грунтовых вод. Характер грунта на участке диктует конструктивное устройство фундамента, возможность устройства подвала, способ прокладки коммуникаций, тип очистных сооружений и в целом влияет на экономичность строительства.

Геологические работы включают:

- бурение;

- отбор проб грунта и воды (на постройку здания – от 2 до 6 скважин различной глубины в зависимости от габаритов здания и состава грунтов);

- лабораторные испытания;

- составление отчета с рекомендациями по типу фундаментов, способам прокладки коммуникаций и мероприятиям по их защите.

При исследовании грунта учитываются следующие основные показатели:

- пучинистость, то ест сила, с которой грунт при воздействии отрицательных температур будет выталкивать из себя фундамент, трубы и заглубленные очистные сооружения. На основе полученных данных прогнозируют допустимую деформацию инженерных сооружений и, соответственно, выбирают материалы, способы строительства и обустройства систем;

- водонасыщенность, то есть уровень грунтовых вод. Знание этого показателя помогает, во-первых, определить глубину будущего колодца или частной скважины и, во-вторых, позволяет прогнозировать устойчивость строения и проложенных коммуникаций;

- агрессивность вышетоящих грунтовых вод: в случае высокой концентрации некоторых химических соединений приходится использовать специальные марки бетона и думать о специальной защите труб и кабелей.

Неразумно строить или реконструировать сооружение, не зная точно геологического строения участка (на каких грунтах будет монтироваться фундамент, физико-механических характеристик и несущей способности грунтов под нагрузкой, их коррозионной активности, режима подземных вод и т.д. и т.п.), а, следовательно - какую выбрать конструкцию и глубину заложения фундамента. Одни и те же грунты ведут себя по разному в результате обводнения или промерзания, серьезно меняют свои прочностные характеристики в результате разрушения их природной структуры и влажности.

Строительные нормы и правила устанавливают основные положения по определению опасных природных воздействий, вызывающих проявления и (или) активизацию природных процессов, учитываемых при разработке предпроектной документации (обосновании инвестиций в строительство объектов, схем и проектов районной планировки, генеральных планов городов, поселков и сельских поселений и другой документации), технико-экономических обоснований и рабочей документации на строительство зданий и сооружений, а также схем (проектов) их инженерной защиты.

2. Опишите минерал биотит и породы: опока, мергель, мрамор, отвечая на вопросы, помещенные в примечаниях к этим таблицам.

Биотит - минерал из группы слюд. По структуре относится к слоистым алюмосиликатам. Химическая формула K (Mg, Fe)3AlSi3 O10(OH, F)2. Химический состав весьма изменчив: окись калия (К2О) 4,5 — 8,5%, окись магния (MgO) 0,3 — 28%, закись железа (FeO) 2,8 — 27,5%, окись железа (Fе2О3) 0,3— 20,5%, окись алюминия (Аl2О3) 9,5 — 31,5%, окись кремния (SiO2) 33 — 45%, вода (H2O) 6 — 11,5%. Цвет в тонких листочках от черновато-бурого до буро-зелёного. Биотит является важным породообразующим минералом гранитов, трахитов. Реже встречается в более основных и очень редко в основных породах (базальты). Широко распространён в пегматитах. Во многих метаморфических породах (контактовые роговики, слюдяные сланцы, парагнейсы, ортогнейсы) встречается в виде мелкочешуйчатых, иногда плотных шлировых выделений. Распространен повсеместно. Практически во всех кислых магматических (граниты, гранодиориты и др.) и метаморфических (гнейсы, сланцы) Наиболее крупные кристаллы достигают 1—1,5 м, встречаются в пегматитовых жилах. Биотит применяют в малоответственных электроизоляционных изделиях, порошок его также идёт на изготовление бронзовой краски.

Опока относится к осадочным породам смешанного происхождения, к глинисто-кремнистой группе пород. Легкая, твердая, микропористая. От мергеля отличается отсутствием извести, поэтому не вскипает с HCl.

Опоки сложены тонкозернистым опалом, содержание которого достигает 85-90 %. Обычно в опоках почти отсутствуют частицы свыше 0,1 мм, а частиц, которые меньше этой величины, содержится более 70-80 %. Рядом промежуточных типов опоки связаны с глинистыми и песчаными породами.

Типичные опоки имеют желто-серый и светло серый цвет, для более плотных оркемнелых разностей характерна более темная (темно-серая) окраска. Практически во всех разностях опок обнаруживается раковистый излом.

Общими инженерно-геологическими особенностями опок являются: 1) высокая пористость; 2) большая влагоемкость; 3) сравнительно высокая прочность в сухом состоянии и значительное ее падение при водонасыщении; 4) слабая морозоустойчивость.

Характерной чертой опок является именно их чрезвычайно слабая морозоустойчивость. Уже после 2-4 циклов попеременного замораживания и оттаивания образцы разрушаются. Это может быть объяснено лишь большой влагоемкостью опок (до 50-70%). Кроме того, нужно отметить, что хотя поры в опоках открытые и сообщаются друг с другом, водопроницаемость опок ничтожна (возникающий в опоках естественного отложения коэффициент фильтрации, равный 5 м/сут.), связан исключительно с трещиноватостью пород массива.

Мергель относится к осадочным породам смешанного происхождения, к глинисто-карбонатной группе пород. Бурно вскипает с CHl, на месте капли оставляет пятно грязи. Цвет разнообразный и зависит от цвета глинистой примеси. Порода плотная, нередко слоистая. Состоит из смеси кальцита с глиной (глины 30-50 %)

Это известково-глинистая порода, у которой глинистые частицы сцементированы карбонатным материалом. Распределение глинистого и карбонатного вещества в мергеле чаще всего равномерное. Обычно под мергелем понимают такую породу, у которой содержание CaCO3 колеблется в пределах 25-30 %. При большом содержании CaCO3 порода получает название мергелистый известняк, а при меньшем – глинистый мергель. Эти типы пород связывают мергель, с одной стороны, с известняком, с другой – с глинами. Мергель способен набухать благодаря содержащемуся в нем глинистому веществу, при этом все мелкие трещины, по которым возможна циркуляция воды, закрываются и тем самым прекращается фильтрация воды сквозь мергелистые толщи. Набухание мергеля главным образом зависит от соотношения в породе карбонатной и глинистой составляющих.

Физико-механические свойства мергелей в связи с содержанием карбонатов и степени их дисперсности определяются в весьма широком диапазоне измерения. На природных скосах и откосах искусственных выемок мергели быстро выветриваются, разрушаются, формируя весьма подвижные плитчатые осыпи. Мергель, в связи с уникальностью состава (карбонаты + глина), практически без дополнительного обогащения, дает возможность использовать его в качестве природного сырья для производства цемента.

Мрамор является представителем карбонатно-метаморфических пород, которые могут образовываться как при региональным, так и при контактовом метаморфизме. Главным здесь является наличие среди факторов значительных температур и давлений. Минеральный состав: кальцит, иногда примесь доломита, кварца, полевого шпата. Мрамор - перекристаллизовавшийся известняк, в котором между кристаллическими зернами имеется непосредственная связь. Структура кристаллически-зернистая, текстура массивная. Цвет разнообразен. При действии HCl вскипает. Структура и текстура мраморов диктует их физические и механические свойства. Среднезернистые массивные мраморы, например, из бассейна реки Амур характеризуются прочностью на сжатие в среднем 115 МПа, которая после водонасыщения снижается до 80 МПа, а после испытаний на морозостойкость падает до 70 МПа. Мелкозернистые доломитизированные мраморы достигали прочности 200 МПа и более. В то же время крупнозернистые «сахаровидные» разности мраморов имеют прочность, не превышающую 50-60 МПа. Отличительной чертой мраморов среди метаморфических пород является их слабая растворимость в воде, которая содержит углекислоту. Это определяет значительно меньшую закарстованность мраморных массивов, чем в толщах, сложенных известняками или доломитами. Мрамор довольно устойчив к «обычному» выветриванию, сохраняет крутые, вплоть до «отвесных», природные склоны.

3. Назовите основные физико-механические свойства горных пород, необходимые для проектирования и строительства. Опишите условия образования и строительные свойства морских грунтовых отложений

Основные физико-механические свойства горных пород

Показатели физических и механических свойств скальных и нескальных грунтов между собой довольно значительно разнятся, особенно физические. Характеристики физических свойств выражают физическое состояние грунтов (плотность, влажность и др.) и позволяют их классифицировать по типу, виду и разновидностям. Под механическими подразумевают такие свойства, которые появляются в грунтах под воздействием внешних усилий (давлении, удара.).

Для решения задач проектирования зданий и сооружений все физико-механические характеристики грунтовых оснований разделяют на две группы:

1) показатели физико-механических свойств, которые используют непосредственно в расчетах оснований;

2) вспомогательные показатели, с помощью которых осуществляют классификацию грунтов, прогнозируются механические характеристики первой группы, выделяют инженерно-геологические элементы в толще грунтов

Характеристики физико-механических свойств используемых в расчетах оснований

Прочность грунта оценивается максимальной нагрузкой, приложенной к нему в момент разрушения (потери сплошности). Эта характеристика называется пределом прочности Rc измеряется в МПа, или временным сопротивлением сжатию.

На прочность грунтов влияют: минеральный состав, характер структурных связей, трещиноватость, степень выветрелости, степень размягчаемости в воде. Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдвигу. Определение этого показателя необходимо для расчета устойчивости оснований, а так же для оценки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т. д. Сопротивление сдвигу оценивается силами внутреннего сдвига φ измеряется в градусах, сцепления C, кПа. Под первыми понимают силы сопротивления, которые возникают между соприкасающимися друг с другом частями грунта, а под вторым – сопротивление структурных связей грунта всякому перемещению слагающих частиц.

Для практических расчетов по деформациям и несущей способности грунтов применяются показатели удельного сопротивление C, кПа, φ, град. Сдвиговые характеристики определяют полевыми работами (срез целиком грунта, вращательный срез, зондирование) и лабораторными исследованиями в приборе плоского среза (стабилометре)

Деформационные свойства характеризуют поведение грунтов под нагрузками, не превышающими критические и не приводящие к разрушению. Деформируемость грунтов зависит как от сопротивляемости и податливости структурных связей, пористости, так и от способности деформироваться слагающих их минералов.

Для проведения расчетов по деформациям грунтов используют модуль общей деформации E, измеряется в МПа. Для его определения проводят штамповые и прессиометрические полевые работы, а так лабораторные исследования компрессионные и стабилометрические испытания грунтов.

При определении ориентировочных размеров подошвы слоя по таблицам СНиП 2.02.01-83 находят значение расчетного сопротивления грунтов R0 (кПа)

Для расчета стабилизации осадок зданий и сооружений определяющим показателем будет коэффициент фильтрации kф. Определяется в лабораториях, по таблицам, по опытным откачкам воды для водонасыщенных и наливы для сухих грунтов.

В расчетах по деформациям и по несущей способности грунтов используется плотность грунта p (отношение массы образца к его объему).

Вспомогательные характеристики, отражающие физические свойства дисперсных грунтов

Важными расчетными характеристиками являются коэффициент пористости е, степень влажности Sr и показатель текучести JL. Они характеризуют состояние грунтов. По наименованию грунтов и их коэффициенту пористости определяют плотность сложения песчаных грунтов. Показатель текучести характеризует подвижность глинистых частиц при механических воздействиях на грунт. JL отражает степень заполнения пор грунтовой водой

В лабораторных условиях для определения гранулометрического состава исследуют зерновой и микроагрегатный состав (по ГОСТ 12536-84), природную влажность W, влажность на границе раскатывания (пластичности) для глинистых грунтов Wp, влажность на границе текучести только для пылеватоглинистых грунтов WL (по ГОСТ 5180-84).

Кроме указанных характеристик на свойства грунтов во многих случаях существенное влияние оказывают минеральный и химический составы, структуры и текстуры, для скальных грунтов – трещиноватость, степень выветрелости, для дисперсных – содержание водорастворимых солей, присутствие органического вещества.

Реологические свойства грунтов. При оценке свойств грунтов следует помнить, что эти свойства могут изменяться во времени в силу воздействия процессов выветривания и многолетнего воздействия больших нагрузок. Всё это приводит к «усталости» грунтов. В грунтах возникают процессы деформации в виде ползучести и даже текучести. – этот процесс называется реологическим. В результате грунт разрушается, издание деформируется.

Условия образования и строительные свойства морских грунтовых отложений

К морским отложениям относятся большинство известняков, доломитов, мергелей и кремнистых пород, значительная часть глин и аргиллитов, алевролитов, песчаников, конгломератов, а из полезных ископаемых — многие железные и марганцевые руды, большинство фосфоритов, горючие сланцы и др. Многие метаморфические горные породы (гнейсы, сланцы, мраморы) первоначально накапливались как морские отложения.

В прибрежной зоне морские осадки (обломочные горные породы) формируются как за счет продуктов разрушения берегов, так и за счет продуктов привноса материала ветром и особенно реками. В морях обитают организмы, имеющие твердые скелеты (раковины, панцири), состоящие из CaCO3 или SiO2.nH2O, поставляющие тем самым органические осадки, образующие органические горные породы. Морская вода богата солями, поэтому среди морских отложений большое место занимают отложения химического происхождения.

У берегов моря накапливаются грубообломочная масса (галечники, гравий). За пляжной зоной, на низких берегах формируются береговые валы из гальки, песка, битой ракушки высотой 1-5м, шириной до 10-12м. Валы возникают на расстоянии наибольшего набегания волн на низкие берега.

Между валами и берегом располагаются пляжные отложения – пески илы, гравий, реже галечник.

В зоне шельфа – пески различной крупности. Здесь осаждается основная масса осадков в основном обломочного происхождения.

По мере удаления от берега обломочным накоплениям все более примешиваются органический материал, формируя илы и осадки химического происхождения

На материковом склоне и океанском ложе преобладает глинистый материал. Более всего развиты органогенные осадки.

Строительная оценка пород морского происхождения определяется условиями их образования. Так глубоководные отложения в отличие от мелководных имеют более выдержанный состав, значительную мощность, однородность, однотипные свойства. Отложения шельфов довольно однообразны по напластованию, породы, рожденные у береговой линии изменчивы во всех отношениях.

Древние морские отложения являются надежным основанием под здания и сооружения, но в таких породах могут присутствовать примеси негативного характера, например, пирита и ряда водорастворимых солей. Глубоководные глины часто находятся в переуплотненном состоянии: в крутых откосах в них часто возникают оползни. Всегда надежным основанием служат пески, галечники и другие породы обломочного происхождения. К слабым грунтам по прочности и устойчивости относятся мощные толщи современных прибрежных илов.

4. Перечислите методы определения абсолютного и относительного возраста пород. Назовите эры и периоды геологической истории Земли. (N1, С3, T2, O1)

Для определения абсолютного возраста породы применяют методы, основанные на использовании процессов радиоактивных превращений, которые происходят в некоторых химических элементах (уран, калий, рубидий и д. р.) входящих в состав этих пород. Например, зная, какое количество свинца образуется из 1 г. урана и, определяя их совместное содержание в данном минерале, можно найти абсолютный возраст минерала и той горной породы, в которой он находится. Это позволяет определять возраст в миллионах лет. По углероду 14С, период полураспада которого 5568 лет, устанавливает возраст более молодых образований. Для оценки возраста геологических объектов огромное значение приобрёл радиоуглеродный метод, основанный на том, что в атмосфере Земли под воздействием космических лучей за счёт обильного азота идёт ядерная реакция 14N + n = 14С + Р; вместе с тем 14С радиоактивен и имеет период полураспада более 5700 лет. В атмосфере установилось равновесие между синтезом и распадом этого изотопа, вследствие чего содержание 14С в воздухе постоянно. Растения и животные при их жизни всё время обмениваются углеродом с атмосферой. Измеряя содержание 14С с помощью высокочувствительной радиометрической аппаратуры, можно установить возраст органических остатков.

Аргоновый метод основан на радиогенном накоплении аргона в калиевых минералах. Стронциевый метод, основанный на радиоактивном распаде 87Rb и превращении его в 87Sr,

Для определения относительного возраста используют два метода: стратиграфический и палеонтологический.

Стратиграфический метод основан на том, что ненарушенный горизонтальный слой толщи парод распределен так, что нижележащие слои породы являются более древними, чем вышележащие. Относительный возраст интрузивных пород и других неслоистых геологических образований определяется по соотношению с толщами слоистых горных пород. Послойное расчленение геологического разреза, т. е. установление последовательности напластования слагающих его пород, составляет стратиграфию данного района. При залегании слоев, в складки, этот метод не используют, т. к. более древние слои могут находиться выше более молодых.

Палеонтологический метод позволяет определить возраст пород исходя из исторического развития жизни на Земле. Остатки вымерших организмов захоронялись в тех осадках, которые накапливались в тот отрезок времени, когда они жили. Сопоставление окаменелостей различных пластов позволило установить процесс необратимого развития органического мира и выделить в геологической истории Земли ряд этапов со свойственным каждому из них комплексом животных и растений. Исходя из этого, сходство флоры и фауны в пластах осадочных пород может свидетельствовать об одновременности образования этих пластов, т. е. об их одновозрастности.

В результате трудов нескольких поколений геологов была установлена общая последовательность накопления слоев земной коры, получившая название стратиграфической шкалы. Верхняя часть её (фанерозой) составлена при помощи палеонтологического метода с большой тщательностью. Для нижележащего отрезка шкалы (докембрий), соответствующего огромной по мощности толще пород, палеонтологический метод имеет ограниченное применение из-за плохой сохранности или отсутствия окаменелостей. Вследствие этого нижняя - докембрийская - часть стратиграфической шкалы расчленена менее детально. По степени метаморфизма горных пород и др. признакам докембрий делится на архей (или археозой) и протерозой. Верхняя - фанерозойская - часть шкалы делится на три группы (или эратемы): палеозойскую, мезозойскую и кайнозойскую. Каждая группа делится на системы (всего в фанерозое 12 систем). Каждая система подразделяется на 2-3 отдела; последние в свою очередь делятся на ярусы и подчинённые им зоны. Как системы, так и многие ярусы могут быть прослежены на всех континентах, но большая часть зон имеет только местное значение. Наикрупнейшим подразделением шкалы, объединяющим несколько групп, служит эонотема (например, палеозойская, мезозойская и кайнозойская группы объединяются в фанерозойскую эонотему, или фанерозой). Стратиграфическая шкала является основой для создания соответствующей ей геохронологической шкалы, которая отражает последовательность отрезков времени, в течение которых формировались те или иные толщи пород. Каждому подразделению стратиграфической шкалы отвечают определённые подразделения геохронологической шкалы. Так, время, в течение которого отложились породы любой из систем, носит название периода. Отделам, ярусам и зонам отвечают промежутки времени, которые называются соответственно эпоха, век, время; группам соответствуют эры. Крупнейшему стратиграфическому подразделению - эонотеме - отвечает хронологический термин - эон. Существуют два эона - докембрийский, или криптозойский, и фанерозойский. Продолжительность более древнего - докембрийского эона составляет около 5/6 всей геологической истории Земли. Каждый из периодов фанерозойского эона, за исключением последнего - антропогенового (четвертичного), охватывает примерно равновеликие интервалы времени. Антропогеновая система, соответствующая времени существования человека, намного короче. Расчленение антропогена проводится, в отличие от других периодов, по фауне наземных млекопитающих, которая эволюционирует гораздо быстрее, чем морская фауна (в составе последней за время антропогена не произошло принципиальных изменений), а также на основе изучения ледниковых отложений, характеризующих эпохи всеобщего похолодания. Некоторые исследователи считают выделение антропогеновых отложений [см. Антропогеновая система (период)] в особую систему неправомочным и рассматривают её как завершающий этап предшествующего неогенового периода.

N1 Эон - Неохрон (фанерозой), кайнозойская эра (KZ), начало неогенового периода (N), Миоцен (N1).

Начало около 25 млн. лет, окончание около 5 млн. лет, длительность около 20 млн. лет

Геологические события и климат: Африка столкнулась с Европой и Азией, образовав Альпы. Индостан врезался в Азию, «выдавив» Гималаи. По мере наползания других материковых плит друг на друга начали формироваться также Скалистые горы и Анды. Ледниковый покров в Южном полушарии распространился на всю Антарктиду, что привело к дальнейшему охлаждению климата;

С3 Палеозойская эра (PZ) Каменноугольный период, Верхнекаменноуг (С3).

Эпоха (отдел) Верхний карбон включает в себя 2 яруса: касимовский (C3k) и гжельский (С3g).

Начало около 360 млн. лет, окончание около 286 млн. лет, длительность около 74 млн. лет

Геологические события и климат: Гондвала и Лавразия постепенно сближались, при этом возникали новые горные цепи. В раннем карбоне на обширных пространствах раскинулись мелкие прибрежные моря и болота, и на большей части суши установился тропический климат. Громадные леса с пышной растительностью существенно повысили содержание кислорода в атмосфере. В дальнейшем похолодало, и на Земле произошло по меньшей мере два крупных оледенения.

T2 Мезозойская эра (MZ) Триасовый период (Т), Среднетриасовый отдел.

Начало около 248 млн. лет, окончание около 213 млн. лет, длительность около 35 млн. лет

Геологические события и климат: Пангея вновь начала раскалываться на Гондвану и Лавразию, начал образовываться Атлантический океан. Уровень моря по всему миру был очень низок. Климат почти повсеместно теплый, постепенно становился более сухим, и во внутренних областях сформировались обширные пустыни. Мелкие моря и озера постепенно испарялись, из-за чего вода в них стала очень соленой.

O1 - Палеозойская эра (PZ) Ордовикский период (О) Нижнеордовик

Начало около 500 млн. лет, окончание около 438 млн. лет, длительность около 62 млн. лет

Геологические события и климат: Гондвана по-прежнему находится в Южном полушарии, а остальные материки – в районе экватора. Европа и Северная Америка постепенно отодвигались друг от друга, а океан Япетус расширялся. На протяжении периода массивы суши смещались все дальше к югу. Старые ледниковые покровы кембрия растаяли, и уровень моря повысился. Большая часть суши была сосредоточена в теплых широтах. В конце периода началось новое олединение.

5. Опишите сущность процессов внутренней динамики Земли (эндогенных процессов). Приведите схемы нарушений форм залегания пород (сдвиг, горст). Покажите зависимость силы землетрясения от геоморфологического строения участка, состава и обводнённости пород

Эндогенные процессы (греч.Endon - внутри + Genes - рождающий, рожденный) - рельефообразующие геологические процессы, связанные с энергией, возникающей в недрах твёрдой земли и обусловленные ее внутренней энергией, силой тяжести и силами, возникающими при вращении Земли. Эндогенные процессы проявляются в виде тектонических движений земной коры, магматизма, метаморфизма горных пород, сейсмической активности. Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационная дифференциация). Эндогенные процессы играют главную роль при образовании крупных форм рельефа.

Тектоническими движениями называют движения земной коры, вызывающие изменение залегания геологических тел.

Тектонические движения земной коры разделяют на три основных типа:

1. Колебательные движения, выражающиеся в медленных поднятиях и опусканиях отдельных участков земной коры и приводящие к образованию крупных поднятий и прогибов.

Колебательные движения не изменяют первоначальных условий залегания горных пород, но от них зависит положение границ между сушей и морями, обмеление и усиление размывающей деятельности рек.

Различают следующие виды колебательных движений земной коры:

прошедших геологических периодов

новейшие, связанные с четвертичным периодом;

современные

2. Складчатые движения. Осадочные породы первоначально залегают горизонтально или почти горизонтально. Это положение сохраняется даже при колебательных движениях земной коры. Складчатые тектонические движения выводят пласты из горизонтального положения, придают им наклон или сминают в складки. Отсюда возникают складчатые дислокации.

Все формы складчатых дислокаций образуются без разрыва сплошности слоёв. Основными среди этих дислокаций является: моноклиналь, флексура, антиклиналь и синклиналь.

Моноклиналь – самая простая форма нарушения первоначального залегания пород и выражается в общем наклоне слоёв в одну сторону.

Флексура – коленоподобная складка, образующаяся при смещении одной части толщи пород относительно другой без разрыва сплошности.

Антиклиналь – складка, обращенная своей вершиной вверх.

Синклиналь – складка с вершиной, обращенной вниз.

3. Разрывные движения. В результате интенсивных тектонических движений могут происходить разрывы сплошности слоёв. Разорванные части пластов смещаются относительно друг друга. Смещение происходит по плоскости разрыва, которая проявляется в виде трещины. Величина амплитуды смещения бывает разной – от сантиметров до километров. К разрывам относят сбросы, взбросы, горсты, грабены, надвиги.

Сброс образуется в результате опускания одной части толщи относительно другой. Если при разрыве происходит поднятие, то образуется взброс.

Грабен возникает, когда участок земной коры опускается между двумя крупными разрывами. Если участок поднимается, то образуется горст.

Надвиг в отличие от предыдущих форм разрывных дислокаций возникает при смещении толщ в горизонтальной или сравнительно наклонной плоскости. В результате надвига молодые отложения могут быть сверху перекрыты породами более древнего возраста.

сдвиг (геол.), смещение одних блоков горных пород относительно других в горизонтальном направлении по разлому, Сдвиг – представляет собой разрывное нарушение, в котором происходит горизонтальное смещение горных пород по простиранию.

Схемы разрывных дислокаций: а – горст, б – сдвиг

Основные физико-механические свойства горных пород, необходимые для проектирования и строительства Основные физико-механические свойства горных пород, необходимые для проектирования и строительства

а б

Сейсмические движения - проявляются в виде упругих колебаний земной коры. Присущи районам геосинклиналей, где активно действуют современные горообразовательные процессы, а также зонам субдукции и обдукции.

Сотрясения сейсмического происхождения происходят почти непрерывно, но только более из 100 тысяч землетрясений к разрушительным последствиям приводят около 100, а только отдельные к катастрофам.

Очаг зарождения сейсмических волн называют гипоцентром. По глубине залегания гипоцентра различают землетрясения: поверхностные: от 1 до 10 км глубины, коровые – 30-50 км и глубокие (плутонические) – от 100-300 до 700 км. От гипоцентра во все стороны расходятся сейсмические волны, по своей природе являющиеся упругими колебаниями. Различают продольные и поперечные сейсмические волны. Продольные волны вызывают растяжение и сжатие пород в направлении их движения. Они распространяются во всех средах – твердых, жидких и газообразных. Поперечные колебания перпендикулярны продольным, распространяются только в твердой среде и вызывают в породах деформации сдвига.

Непосредственно над гипоцентром на поверхности земли располагается эпицентр. На этом участке сотрясение поверхности происходит в первую очередь и с наибольшей силой. На поверхности земли от эпицентра во все стороны расходятся поверхностные волны, по природе они являются волнами тяжести (подобно морским валам).

Тектонические сейсмические явления возникают как на суше, так и на море. В связи с этим различают землетрясения и моретрясения.

Моретрясения возникают в глубоких океанических впадинах Тихого, реже Индийского и Атлантического океанов. Быстрые поднятия и опускания дна океанов вызывают смещения крупных масс горных пород и на поверхности океана порождают пологие волны (цунами). Цунами перемещаются на расстояния в сотни и тысячи километров со скоростью 500-800 и даже 1000 км/ч. По мере уменьшения глубины моря крутизна волн резко возрастает, и они со страшной силой обрушиваются на берега, вызывая разрушения сооружений и гибель людей.

Зависимость силы землетрясения от геоморфологического строения участка, состава и обводнённости пород

В зависимости от геологических особенностей конкретного района оценка силы землетрясения может меняться в большую или меньшую сторону. Породы делят на категории по сейсмическим свойствам:

Породы I категории уменьшают оценку силы землетрясений на 1 балл от общей оценки по сейсмической карте района, т. е. последствия землетрясений будут менее катастрофичны. К ней относятся: скальные, например, граниты, гнейсы, известняки, песчаники; полускальные, например, мергель, глинистые песчаники, туфы, гипсы породы, крупнообломочные особо плотные породы при глубине залегания грунтовых вод более 15 метров.

Породы II категории по своим сейсмическим свойствам свою исходную бальность сохраняют без изменения. Это глины и суглинки, находящиеся в твердом состоянии, пески и супеси при глубине залегания грунтовых вод менее 8 метров, крупнообломочные породы при глубине залегания грунтовых вод от 8 до 10 метров.

Породы III категории на участках таких пород при оценке последствий землетрясений балл повышают на единицу, т. е. последствия землетрясения на такой площадке будут более разрушительными. К таким породам относят: глины и суглинки, находящиеся в пластичном состоянии, пески и супеси при глубине залегания грунтовых вод менее 4 метров, крупнообломочные породы при глубине залегания грунтовых вод 3 метров.

Крайне опасным для строительства являются участки с сильно расчлененным рельефом, слоны оврагов и ущелий, берега рек. Весьма затруднительно строить при высоком залегании уровня грунтовых вод (1-3 метра). Опасны для строительства оползневые и карстовые участки. Следует учитывать, что наибольшие разрушения происходят на заболоченных территориях, на обводненных пылеватых, на лессовых недоуплотнённых породах.

6. Объясните сущность процессов внешней динамики Земли (экзогенных процессов). Опишите процессы эрозии, химической суффозии и возможные защитные мероприятия

Экзогенные процессы – геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Экзогенные процессы протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой.

Геологические процессы на земной поверхности подразделяют на: процессы выветривания, деятельность атмосферных осадков, деятельность рек, деятельность моря, деятельность в водохранилищах, озерах, болотах, деятельность ледников, движение горных пород на склонах рельефа местности, суффозионные и карстовые процессы, плывуны, посадочные явления в лессовых породах.

1. Процесс выветривания.

Под процессом выветривания понимают разрушение и изменение состава горных пород, происходящие под воздействием различных агентов, действующих на поверхности земли, среди которых основную роль играют колебания температур, замерзание вод, кислот, щелочей, углекислоты, действие ветра, организмов.

Особенностью процесса выветривания является постепенное и постоянное разрушение верхних слоёв литосферы. В результате этого горные породы и материалы дробятся, изменяют свой химико-минеральный состав.

Воздействие на земную поверхность, на толщи скальных горных пород, процесса выветривания приводит к образованию коры выветривания, которая состоит из видоизменённых выветриванием горных пород и продуктов их разрушения.

По интенсивности воздействия тех или иных агентов выветривания и характеру изменения горных пород принято выделять три вида выветривания: физическое, химическое, биологическое.

Физическое выветривание выражено в механическом дроблении пород без существенного изменения их минерального состава. Породы дробятся в результате колебания температур, замерзания воды, механической силы ветра и ударов давления песчинок, переносимых ветром, кристаллизации солей в капиллярах, давления, которые возникают в процессе роста корней растений и т. д.

Химическое выветривание выражается в разрушении горных пород путём растворения и изменения их состава. Наиболее активными химическими реагентами в этом процессе является вода, кислород, углекислота и органические кислоты.

В породах кроме растворения протекают реакции обмена, замещении, окисления, гидратации и дегидратации. Простейшим видом химического выветривания является растворение в воде.

Биологическое выветривание проявляется в разрушении горных пород в процессе жизнедеятельности живых организмов и растений. Механические разрушения производят растения своей корневой системой, живые организмы, особенно из числа землероев. Растения, животные, микроорганизмы и низшие растения выделяют различные кислоты и соли, которые весьма активно взаимодействуют с горными породами, разрушая их.

Геологическая деятельность ветра. Выражается в разрушении земной поверхности (выдувание, или дефляция, обтачивание, или корразия), перенос продуктов разрушения и отложение (аккумуляция) этих продуктов виде скоплений различной формы.

Выдувание (дефляция) возникает в результате воздействия механической силы ветра. Наиболее ярко этот процесс проявляется в районах, сложенных рыхлыми или мягкими породами. От этих пород отрываются и уносятся частицы.

Корразия Движение ветра часто сопровождается переносом пыли, песка и даже гравия. Ударяясь о твердые породы, они перетирают, сверлят и обтачивают их поверхность. Появляются борозды, желоба, углубления.

Эоловые отложения перенос ветром частиц совершается во взвешенном состоянии (глинистые, пылеватые частицы) или путем перекатывания (песчаные частицы), в зависимости от скорости ветра и размера частиц. При меньшей скорости ветра и других благоприятных условиях происходит отложение переносимого материала (аккумуляция). Так образуется ветровые (эоловые) отложения

Геологическая деятельность атмосферных осадков.

а) Образование наносов. Продукты выветривания пород смываются потоками с возвышенностей на склоны и к их подножию. Со временем в этих местах накапливаются отложения наносов: на склонах и у их подошвы – делювий, в понижениях, примыкающих к склонам, пролювий

б) Образование оврагов. При таянии снегов и дождя на склонах рельефа отдельные струйки образуют временные ручьи. Возникает струйчатая эрозия, что приводит к образованию вытянутых понижений рельефа – оврагов

в) Селевые потоки. Сель представляет собой временные, но бурные грязекаменные потоки, возникающие в горных районах. Сели вызываются дождевыми ливнями или быстрым таянием снегов и ледников в горах. Огромная масса воды устремляется вниз по ущельям, смывая и захватывая по дороге элювий и делювий. В результате водный поток превращается в грязекаменный.

г) Снежные лавины. Это обрушение больших масс снега с крутых гор. На высоких горных хребтах постоянно накапливается снег. Под действием собственной тяжести масса снега, от перегрузки, порыва ветра и даже от звукового колебания воздуха, приходит в движение и обрушивается вниз. Склон протяженностью от 100 до 500 метров и уклоне 30-40о является оптимальным, для формирования лавины

Геологическая деятельность рек. Полноводные реки совершают большую геологическую работу – разрушение горных пород (эрозия), перенос и отложение (аккумуляция) продуктов разрушения. Эрозия осуществляется динамическим воздействием воды на горные породы. Речной поток истирает породы обломками, которые несет вода, да и сами обломки разрушаются и разрушают ложе потока трением при перекатывании. Одновременно вода оказывает на породы растворяющее действие.

Перенос продуктов эрозии осуществляется различными способами: в растворенном виде, во взвешенном состоянии, перекатыванием обломков по дну, сальтацией (подпрыгиванием). До 25-30% всего материала река переносит в растворенном состоянии. Во взвешенном состоянии передвигаются пылевато-глинистые и тонкопесчаные частицы.

При определенных условиях река откладывает обломочный материал. Речные отложения называют аллювиальными. На первой стадии развития река обладает большой скоростью течения из-за того, что дно имеет значительный уклон. Обломочный материал почти весь поступает в морской бассейн. Действует донная эрозия. На второй стадии река вырабатывает равновесный профиль. Река размывает свои берега. Обломочный материал в большей своей части оседает в русле.

Геологическая деятельность моря. Вследствие вертикальных колебаний земной коры моря перемещаются, как бы переливаются с одного места на другое. В одних местах берег отступает, и населенные пункты заметно удаляются от моря. В других море наступает, берег погружается под воду. Геологическая деятельность моря в виде разрушения горных пород, берегов и дна называют абразией. Основную разрушительную работу совершают: морской прибой и в меньшей степени морские течения (прибрежные, донные, приливы и отливы). Волны воздействуют на берег постоянно. Под силой удара морские берега разрушаются, образуются обломки пород, которые подхватываются волнами и «бомбардируют» берега.

Кроме механического разрушения, морская вода оказывает химическое воздействие. Значительное разрушительное воздействие оказывают многие морские растения и организмы. Например, планктон, создавая слой обрастания, может разрушать бетон и камень.

Разрушительная работа течений невелика. Наибольшее значение течения имеют в переносе продуктов разрушения. Во взвешенном состоянии ими транспортируются растворенные вещества и песочно-глинистые частицы. Более крупные частицы и обломки пород особенно при приливно-отливных течениях переносятся в основном волочением по дну.

Геологическая деятельность в озерах, водохранилищах, болотах.

Озера – замкнутые углубления на поверхности земли, заполненные в большинстве своем пресной водой и не имеющие непосредственной связи с морем.

Разрушительная работа озер проявляется в абразивной деятельности волн, нагоняемых ветром. Постоянно дующие в определённых направлениях ветры вызывают волны, которые прибоем подмывают берега. Каждое поднятие или опускание уровня воды в озерах вызывает абразивные процессы. Большое влияние на положение уровня воды оказывает тектоническая деятельность земной коры, а также деятельность человека.

Созидательная работа озер заключается в образовании отложений.

В искусственных водохранилищах так же, как и в морях и озерах, наблюдается абразивная работа вод, здесь она происходит неизмеримо более интенсивно. Это объясняется тем, что речные долины, в которых создают водохранилища, образовались под действием эрозии рек и их профиль не соответствует новым условиям, которые возникают при заполнении водой почти всей долины. Водохранилища стремятся выработать новый профиль берегов, и размыв береговой линии происходит особенно интенсивно.

Избыточно увлажненные участки земной поверхности с развитой на них специфической растительностью называют болотами. Заболоченные земли формируются там, где наблюдается уменьшение водопроводности грунтов или ухудшение условий испарения воды, поверхностного ее стока и подземного дренирования.

Геологическая деятельность ледников. При своём движении лед истирает и вспахивает поверхность земли, создавая котловины, рытвины, борозды. Эта разрушительная работа совершается под действием тяжести льда. В лед вмерзают обломки пород. Наличие трещин благоприятствует проникновению обломков внутрь и в нижнюю часть ледников. Таким способом обломочный материал передвигается вместе с ледником. При движении ледника эти обломки, в свою очередь, оказывают разрушающее действие на поверхность земли.

При таянии льда весь обломочный материал отлагается. Образуются значительные по мощности ледниковые отложения (морены). При таянии ледника образуются постоянные потоки талых вод, которые размывают донную и конечную морены. Вода подхватывает материал размываемых морен, выносит за пределы ледника и откладывает в определенной последовательности. Вблизи границ ледника остаются крупные обломки, дальше осаждаются пески и еще дальше – глинистый материал. При наступлении и отступлении ледника последовательно смещаются зоны накопления материала по его крупности. Если на глины накладываются пески и более крупные обломки, то ледник наступал, продвигался вперед, область оледенения расширялась. Наложение на крупные обломки и пески глинистых осадков говорит о периоде отступления ледника.

Движение горных пород на склонах рельефа местности.

При определенных условиях и под влиянием гравитации, горные породы, слагающие склон, могут прийти в движение. Начинается смещение их вниз по склонам. В результате этого образуются осыпи, курумы, обвалы и оползни

Осыпи. На крутых склонах, особенно в горных районах, активно действует процесс физического выветривания. Породы растрескиваются, и обломки скатываются вниз по склонам до места, где склон выполаживается. Так у подножья склонов образуются валы из накопленных продуктов осыпания – глыб, щебня, более мелкие обломки. Характерной особенностью осыпей является их подвижность. Масса обломков нарастает и находится в рыхлом, весьма неустойчивом положении и приходят в движение за счет увеличения общего веса, сильного увлажнения, подрезки нижней части осыпи дорогами, от землетрясений и даже от более мелких сотрясений, возникающих при работе механизмов или движении транспорта.

Курумы. В результате разрушения скальных пород у подошвы склонов скапливаются крупные обломки и глыбы. По своему местоположению обломки чаще всего тяготеют к пологим склонам, что свойственно ложбинам и днищам долин. Каменные россыпи, или курумы, образуют единую массу глыб от вершины до подошвы склона. Особенность курумов – это их передвижение. Масса обломков, огромных глыб постоянно ползет вниз по склону, так как глыбы лежат на глинисто-суглинистом слое.

Обвалы - это обрушение более или менее крупных масс горных пород с опрокидыванием и дроблением. Обвалы возникают на крутых склонах (более 45-50о) и обрывах естественных форм и рельефа (склоны речных долин, ущелья, побережья морей), а так же в строительных котлованах, траншеях, карьерах. Связаны с трещиноватостью пород, подмывом или подрезкой склонов, избыточным увлажнением пород, перегрузкой обрывов, землетрясениях. В большинстве случаев, обвалы проявляются в периоды дождей, таяния снега, весенних оттепелей.

Оползни – это скользящее смещение горных пород на склонах под действием гравитации при участии поверхностных или подземных вод. Оползни свойственны склонам долин, оврагов, балок, берегам морей, искусственным выемкам. Они разрушают здания и сооружения на самих склонах и ниже их. Для возникновения оползня необходимы определенные условия: высота, крутизна и форма, геологическое строение, свойства пород, гидрогеологические условия.

Крутые склоны (свыше 15о) более подвержены оползням. Оползни свойственны склонам выпуклой и нависающей конфигурации. Типичными оползневыми породами считаются глинистые образования. Подавляющее количество оползней приурочено к выходам подземных вод.

Суффозионные процессы. При фильтрации подземная вода вымывает из пород составляющие их мелкие частицы. Это сопровождается оседанием поверхности земли, образованием провалов, воронок. Этот процесс выноса частиц называется суффозией. Различают два вида суффозии – механическую и химическую. Основной причиной суффозионных явлений...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ

Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2014.01.13
Просмотров: 1740

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434