, где

Xmax максимальное зна">


Главная / Рефераты / Рефераты по экономике

Контрольная работа: Расчет статистических показателей


Задача № 1

УСЛОВИЕ:

Имеются следующие отчетные данные 25 заводов одной из отраслей промышленности:

Номер завода Среднегодовая стоимость основных производственных фондов, млрд. руб. Объем продукции в сопоставимых ценах, млрд. руб.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3,4

3,1

3,5

4,1

5,8

5,2

3,8

4,1

5,6

4,5

4,2

6,1

6,5

2,0

6,4

4,0

8,0

5,1

4,9

4,3

5,8

7,2

6,6

3,0

6,7

3,5

3,3

3,5

4,5

7,5

6,9

4,3

5,9

4,8

5,8

4,6

8,4

7,3

2,1

7,8

4,2

10,6

5,8

5,3

4,9

6,0

10,4

6,9

3,5

7,2

С целью изучения зависимости между среднегодовой стоимостью основных производственных фондов и выпуском валовой продукции произведите группировку заводов по среднегодовой стоимости основных производственных фондов, образовав четыре группы заводов с равными интервалами. По каждой группе и совокупности заводов подсчитайте:

1. число заводов;

2. среднегодовую стоимость основных производственных фондов - всего и в среднем на один завод;

3. объем продукции - всего и в среднем на один завод;

Результаты представьте в виде групповой таблицы. Напишите краткие выводы.

РЕШЕНИЕ

Сначала рассчитываем шаг интервала по формуле:

, где

Xmax максимальное значение среднегодовой стоимости ОПФ, Xmax= 8,0;

Xmin - минимальное значение среднегодовой стоимости ОПФ, Xmin = 2,0;

n- Количество групп, n = 4

млн. руб.

Результаты представим в виде групповой таблицы № 1.

В колонку «Номера заводов» записываем номера заводов, которые попадают в интервалы по группам, затем считаем ОПФ (их среднегодовую себестоимость). Считаем колонку «Всего»: складываем среднегодовую себестоимость по заводам групп, затем « В среднем на 1 завод». Считаем «Валовой продукт» - значения объемов продукции в сопоставимых ценах складываем по заводам групп.

Считаем фондоотдачу:

Разбиваем на 4 групп:

I гр.: 2,0 – 3,5 (2,0; 3,0; 3,1; 3,4; 3,5) = 15/5 = 3

Валовой продукт: (2,1; 3,5; 3,3; 3,5; 3,5) = 15,9/4 = 3,98 млрд. руб.;

II гр.: 3,5 – 5,0 (3,8; 4,0; 4,1; 4,1;4,2; 4,3; 4,5; 4,9; 5,1) = 39/9 = 4,3;

Валовой продукт: (4,3; 4,2; 4,5; 5,9; 4,6; 4,9; 5,8; 5,3; 5,8) = 45,3 / 4 = 11,33 млрд. руб.;

III гр.: 5,0 – 6,5(5,2; 5,6; 5,8; 5,8; 6,1; 6,4; 6,5; 6,6; 6,7) = 54,7/9 = 6,08;

Валовой продукт: (6,9; 4,8; 7,5; 6,0; 8,4; 7,8; 7,3; 6,9; 7,2) = 62,8/4 = 15,7 млрд. руб.;

IV гр.: 6,5 – 8,0 (7,2; 8,8) = 15,2 / 2 = 7,6;

Валовой продукт: (10,4; 10,6) = 21 / 4 = 5,25 млрд. руб.;

Используя метод группировок для решения поставленной задачи можно сделать следующие выводы:

1. Параметры фондоотдачи наиболее эффективны в группе предприятий № IV, поскольку максимальное значение этого коэффициента свидетельствует о наиболее эффективном использовании основных фондов в производстве продукции.

2. На этом основании министерству указанной отрасли, куда входят представленные заводы, необходимо рекомендовать проводить группировку предприятий для каждой группы с максимальным числом заводов равным 2.


Таблица № 1

Величина интервала № заводов Число заводов ОПФ Валовой продукт ФОср = ВПср/ОПФср
Всего На 1 завод Всего На 1 завод
2,0 - 3,5 13,23,2,1,3 5 15 3 15,9 3,98 1,06
3,5 - 5,0 7,16,4,8,11,20,10,19,18 9 39 4,33 45,3 11,33 1,16
5,0 - 6,5 6,9,5,21,12,15,13,23,25 9 54,7 6,08 62,8 15,7 1,15
6,5 - 8,0 22,17 2 15,2 7,6 21 5,25 1,38


Задача № 2

УСЛОВИЕ:

Имеются следующие данные по областям Центрально-Черноземного района:

Область Валовой сбор, Ц. Урожайность, Ц. / га.
1 63000 21,0
2 38000 19,6
3 29000 18,4
4 68000 23,2
5 51000 19,5

Вычислите среднюю урожайность в целом по району. Укажите, какой вид средней нужно применить.

РЕШЕНИЕ

Задача составлена на применение средней арифметической и средней гармонической взвешенных. Выбор вида средней зависит от исходной статистической информации и экономического содержания показателя.

Если в условии задачи даны показатели урожайности по видам сельскохозяйственных культур и валовой сбор, то средняя урожайность будет вычислена по формуле средней гармонической взвешенной:

, где

Wi = Xi*fi

Вывод: Средняя урожайность в среднем по району 20,6 ц / га.




Задача № 3

УСЛОВИЕ:

Имеется следующий ряд распределения телеграмм, принятых отделением связи, по числу слов:

Количество слов в телеграмме 12 13 14 15 16 17 18 Итого
Число телеграмм 18 22 34 26 20 13 7 140

Рассчитайте абсолютные и относительные показатели вариации.

РЕШЕНИЕ

Найдем абсолютные показатели вариации

1. Найдём размах вариации по формуле:

, где

Xmax – максимальное значение признака в совокупности

Xmin - минимальное значение признака в совокупности

18 – 12 = 6 слов.

2. Найдем средне арифметическую взвешенную по формуле

3. Рассчитаем средне линейное отклонение взвешенное так как данные сгруппированы, по формуле

4. Взвешенная дисперсия рассчитывается по формуле

5. Найдем среднее квадратическое отклонение (взвешенное) по формуле

=слова

1. Найдем относительные показатели вариации

А). Коэффициент осцилляции по формуле

Б). Линейный коэффициент вариации по формуле

В). Коэффициент вариации по формуле







Задача № 4

УСЛОВИЕ:

По нижеследующим данным вычислите моду и медиану:

Группы деталей по весу, г 40-50 50-60 60-70 70-80 80-90 90-100 100-110 110-120 Итого
Число деталей 2 4 12 18 21 24 11 8 100

РЕШЕНИЕ

Задача № 4 состоит в определении структурных средних – моды и медианы. Для интервальных вариационных рядов структурные средние определяются по формулам.

1. Мода вычисляется по формуле

, где

Хо - нижняя граница модального интервала (интервала, встречающегося с наибольшей частотой)

i - величина модального интервала

fмо - частота модального интервала

fмо-1 - частота интервала, предшествующего модальному

fмo+1 - частота интервала, следующего за модальным

У нас получается, что мода = 24 деталям и находится в интервале (90-100)

2. Медиана вычисляется по формуле

, где

Xо – нижняя граница медианного интервала (интервала, сумма накопленных частот которого впервые превышает половину суммы всех частот)

i - величина медианного интервала

1/2åfi - половина суммы всех частот

Sмe-1 - сумма накопленных частот интервала, предшествующего медианному

Fмe - частота медианного интервала

С учётом накоплений получили, что медиана = 21 детали в интервале(80-90)

ИТОГ: Мода = 91,88 гр., Медиана = 86,67 гр.




Задача № 5

УСЛОВИЕ:

В порядке механической выборки обследован возраст 100 студентов ВУЗа из общего числа 2000 человек. Результаты обработки материалов наблюдения приведены в таблице:

Возраст, лет 17 18 19 20 21 22 23
Число студентов, чел. 11 13 18 23 17 10 8

Установите:

а) средний возраст студентов по выборке;

б) величину ошибки при определении возраста студентов на основе выборки;

в) вероятные пределы колебания возраста для всех студентов при вероятности 0,997;

г) определите долю студентов старше 20 лет;

д.) рассчитайте ошибку выборочной доли и установите пределы удельного веса студентов старше 20 лет в генеральной совокупности.

РЕШЕНИЕ

мода медиана вариация динамика

Нам известно n = 100 чел, N = 2000 чел, F(t) = 0,997 = 3

1. Определим среднюю по выборочной совокупности (по формуле средней арифметической)

Мы видим, что студенты в возрасте 20 лет встречаются чаще, их количество составляет 23 человека.

2. Найдем дисперсию по формуле

3. Определим предельную ошибку по формуле

, где

s2 – дисперсия варьирующего признака

n - объем выборочной совокупности

N - объем генеральной совокупности

4. После этого устанавливаются пределы, в которых находится генеральная средняя, рассчитывается по формуле

, где

t – коэффициент доверия (определяется по заданному уровню вероятности)

µ– средняя ошибка.

- предельная ошибка.

5. Рассчитаем пределы в которой находится генеральная средняя по формуле

ИТОГ: вероятные пределы колебания возраста для всех студентов при вероятности 0,997 составляют в пределах от 19,3 % до 20,4 %

6. Определим долю студентов старше 20 лет.

m= 17+10+8 = 35

7. Определим предельную ошибку по формуле

8. устанавливаются пределы, в которых находится генеральная доля, рассчитывается по формуле

9. Рассчитаем пределы в которой находится генеральная средняя по формуле

ИТОГ: пределы удельного веса студентов старше 20 лет в генеральной совокупности находятся в промежутке от 22 % до 49 %


Задача № 6

УСЛОВИЕ: Производство чугуна в стране характеризуется следующими данными:

Годы Производство чугуна, млн. т.
1990 107
1991 108
1992 107
1993 110
1994 111
1995 110

Для анализа динамики производства чугуна вычислите:

1. абсолютные приросты (или снижения), темпы роста и темпы прироста (или снижения) по годам и к 1990г.; абсолютное значение одного процента прироста (или снижения). Полученные данные представьте в таблице;

2. среднегодовое производство чугуна;

3. среднегодовой темп роста и прироста производства чугуна.

РЕШЕНИЕ

1. Для того чтоб понять, как развивалось производство чугуна, мы построили график и заметили, что производство чугуна имело и темпы роста, и темпы снижения.

Расчет показателей рядов динамики (табл.1-3):

1.1. Абсолютный прирост Таблица 1

Базисные, млн. т. Цепные, млн. т.

1.2. Темп роста Таблица 2

Базисные, % Цепные, %

1.3. Темп прироста Таблица 3

Базисные, % Цепные, %

1.4. Абсолютное значение одного % прироста Таблица 4

Базисные, % Цепные, %

Все расчетные показатели сведем в общую итоговую таблицу (табл.5).


Таблица 5

Наименование

показателя

Тип показа-

теля

Год
1981 1982 1983 1984 1985
Абсолютный прирост

1 0 3 4 3

Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2018.12.06
Просмотров: 8

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!