Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Термодинамические характеристики расплавов на основе железа - Рефераты по металлургии - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по металлургии

Реферат: Термодинамические характеристики расплавов на основе железа



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
1 ТЕРМОДИНАМИКА РАСТВОРОВ
1.1 Основные понятия
1.1.1 Энтальпия.
Величина равная (E+PV) , часто встречается в термодинамических расчетах процессов, происходящих в системах при постоянном давлении; её обозначают через Н и называют энтальпией и иногда теплосодержанием.
Таким образом,
, где Е – внутренняя энергия системы;
Р – давление в системе;
V – объем.
Из определения энтальпии следует, что она, подобно энергии, является функцией состояния системы, так как она выражена через энергию (функцию состояния) и переменные состояния P и V. Следовательно, изменение энтальпии для любого термодинамического цикла (циклического процесса) равно нулю.
Если процесс не циклический, то при постоянном давлении изменение энтальпии системы равно полученной ею (системой) теплоте:
.
Таким образом, для изобарического процесса обмениваемая между системой и внешней средой теплота представляет разность между начальной и конечной энтальпией самой системы и не зависим от пути достижения конечного состояния системы. Этот вывод следует из уравнения (2) и первоначально установленного факта, что энтальпия системы является функцией только её состояния. Следует подчеркнуть, что уравнение (2) применимо только к системе при постоянном давлении, так как теплота q вообще является не только функцией начального и конечного состояний, но зависит также от пути процесса. [2]
1.1.2 Энтропия.
Пусть две системы с термодинамическими вероятностями W1 и W2 образуют одну сложную систему, для которой термодинамическая вероятность W1+2. Так как каждый способ, которым осуществляется состояние первой системы, может сочетаться со всеми способами осуществления второй системы, то общее число способов, которыми может быть осуществлена сложная система, составляет:

Это свойство мультипликативности делает функцию W неудобной для непосредственных расчетов. [1]
Характеризовать в этом смысле состояние системы оказалось удобнее не самой вероятностью осуществления данного макросостояния, а величиной, пропорциональной её логарифму. Эта величина называется энтропией. Энтропия
(S) связана с числом (W) равновероятных микроскопических состояний, которыми можно реализовать данное макроскопическое состояние системы, уравнением:
где k – коэффициент пропорциональности
Наименьшую энтропию имеют идеально правильно построенные кристаллы при абсолютном нуле. Энтропия кристалла, в структуре которого имеются какие- либо неправильности, уже при абсолютном нуле в несколько раз больше, так как нарушения идеальности могут реализоваться не единственным способом. С повышением температуры энтропия всегда возрастает, так как возрастет число способов их расположения. Возрастает она также при превращении вещества из кристаллического состояния в жидкое и, в особенности, при переходе из жидкого состояния в газообразное. Изменяется энтропия и при протекании химических процессов. Эти изменения обычно особенно велики в случае реакций, приводящих к изменению числа молекул газов: увеличение числа газовых молекул приводит к возрастанию энтропии, уменьшение – к её понижению. [4]
Изменение энтропии при различных процессах. Энтропия это функция, дифференциал которой равен . Из определительного соотношения:
, где - приращение теплоты, следует, что для любого обратимого процесса, протекающего при постоянной температуре, изменение энтропии системы:
.
Для процессов, протекающих при постоянных давлении и температуре, имеем:
.
Для термодинамического вещества, нагретого и охлажденного при постоянном давлении,
, где СР - теплоемкость вещества при постоянном давлении; и, следовательно,

Точно также при нагреве и охлаждении вещества при постоянном объеме имеем: [2]

Если система изолирована от окружающей среды, то и, следовательно, . Протекание любого самопроизвольного процесса характеризуется неравенством:
.
Следовательно, в замкнутой системе такие процессы сопровождаются увеличением энтропии. При равновесии энтропия замкнутой системы остается постоянной. [1]
1.1.3 Энергия Гиббса.
Термодинамические характеристики реакций включают значения тепловых эффектов и величины - стандартного изменения свободной энергии для соответствующих реакций. [5]
Изменение энергии Гиббса системы является основной термодинамической характеристикой химической реакции. Для определенности исходные вещества и продукты реакции принимают обычно находящимися в их стандартных состояниях.
Соответствующую величину и называют стандартной энергией Гиббса химической реакции . [6]
Зависимость от различных реакций от температуры с достаточной точностью выражается формулой:

Коэффициенты М и N для различных реакций приведены в справочной литературе. Эти коэффициенты определяются на основе обобщения экспериментальных данных по равновесиям различных реакций. Величины M и N близки к средним значениям тепловых эффектов () и изменения энтропии
() для соответствующих реакций: [5]
.
В некоторых справочных изданиях приведены не энергии Гиббса веществ
GT , а приведенные энергии Гиббса ФТ , которые связаны с GT соотношением:
.
Для энергии Гиббса реакции aA+bB=cC+dD , как и для некоторых других величин, применимо выражение:

Согласно второму закону термодинамики, энергия Гиббса при необратимых процессах может только убывать. Отсюда следует, что является критерием направления и полноты протекания реакции между веществами, взятыми в стандартном состоянии. Реакция может протекать только в том направлении, которое характеризуется отрицательным значением , т.е. реакция всегда идет в направлении снижения энергии Гиббса системы. Если
, то это указывает на равновесие между реагентами в их стандартных состояниях (реакция не идет). Полнота протекания реакции характеризуется константой равновесия К, связанной с уравнением изотермы: .
Поскольку R=8,3192 Дж/(моль*К): .
При переходе к десятичным логарифмам получаем: .
Пользуясь этим уравнением, можно по известному значению определить константу равновесия реакции, и найти необходимые для практики равновесные концентрации и другие характеристики. Например, для реакции получения TiC (), исходя из последнего уравнения и температурной зависимости , можно получить следующее выражение для константы равновесия:

1.1.4 Экстенсивные, интенсивные свойства; парциальные величины.
Экстенсивными называют свойства, которые зависят от количества вещества : V, H, S, G и т.д. Для определения экстенсивного свойства g раствора необходимо просуммировать интенсивные (парциальные мольные) характеристики компонентов , умноженные на соответствующие числа молей ni. Например, для энтальпии раствора имеем , или для 1 моля раствора:
.
Интенсивные свойства раствора – свойства, не зависящие от количества вещества, такие, например, как температура, давление. К числу интенсивных принадлежат и парциальные мольные характеристики . Интенсивные свойства представляют собой частные производные от соответствующих экстенсивных свойств раствора по числу молей данного компонента при постоянных температуре, давлении и числах молей других компонентов:
.
Таким образом, представляет собой приращение свойства бесконечно большого количества раствора при добавлении 1 моля i-того компонента.
Например, парциальный мольный объём компонента в растворе заданного состава показывает, на какую величину изменится объём этого раствора (взятого в бесконечно большом количестве) при добавлении 1 моля данного компонента.
[6]
1.2 Растворы
Раствором называется однородная смесь, состоящая из двух или большего числа веществ, состав которой в известных пределах может непрерывно изменяться.
Однородными являются и химические соединения, однако их состав не может изменяться непрерывно, так как они подчиняются законам постоянства состава и кратных отношений.
1.2.1 Идеальные растворы
Цель термодинамической теории расплавов состоит в том, чтобы связать разл...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 981

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434