Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Улучшение качественных характеристик металла шва за счет повышения чистоты шихты - Рефераты по металлургии - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по металлургии

Реферат: Улучшение качественных характеристик металла шва за счет повышения чистоты шихты



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
Министерство образования и науки Украины
Запорожский национальный технический университет
Кафедра ОТСП
ОТЧЕТ ПО НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ СТУДЕНТОВ
Улучшение качественных характеристик металла шва за счет повышения чистоты шихтовых материалов
Выполнил: ст. гр. ИФ-329
П.Ю. Горбань
Руководитель: проф.
В.С. Попов
Принял: доц.
В.А. Гук
2002
содержание
Содержание 2
Введение 3
1. Исследование структуры и свойств наплавленного металла 4
1.1 Исследование химического состава наплавленного металла 4
1.2 Исследование неметаллических включений в металле шва 6
1.3 Механические свойства наплавленного металла 6
Заключение 8
Перечень ссылок 9
Введение
В современных условиях производства машин, агрегатов и металлоконструкций самого различного назначения сварка, как метод получения неразъемных соединений, остается ведущим технологическим процессом.
Эксплуатационная надежность сварных швов и стабильность их физико- механических свойств зависят от качества и постоянства состава исходного сырья, используемого для изготовления электродов. Для получения высоких свойств наплавленного металла промышленностью выпускается сварочная проволока с достаточно низким содержанием газов, серы, фосфора и других вредных примесей. По специальному заказу изготавливают проволоку из стали, выплавленной в вакуумно-индукционных печах, подвергнутой электрошлаковому или вакуумно-дуговому переплаву [1].
Получение металла шва с минимально возможным содержанием кислорода и оксидных включений достигается путем одновременного раскисления металла алюминием, титаном, кремнием и марганцем, вводимыми в покрытие в виде ферросплавов [2]. Однако содержание кислорода и оксидных включений при этом остается еще достаточно высоким [3]. Для снижения содержания кислорода в металле шва и с целью влияния на процесс зарождения включений, их форму, дисперсность и состав, обычно используются сильные раскислители и модификаторы – церий, цирконий, иттрий, барий, кальций [3,4,5,6].
Применение таких активных элементов в покрытии сварочных электродов усложняет технологический процесс подготовки шихты. Операции дробления, смешивания и пассивирования компонентов сопровождается большой потерей этих элементов на окисление [7].
Во многих отраслях промышленности при изготовлении ответственных деталей из низколегированных сталей применяются электроды с основным покрытием типа УОНИ-13. Сварочные электроды с фтористо-кальциевым покрытием имеют существенные преимущества перед всеми другими при сварке конструкций ответственного назначения [1]. Электроды типа УОНИ-13 характеризуются более низким содержанием газов в наплавленном металле по сравнению с электродами других видов, малая окислительная способность покрытий обеспечивает более полный переход легирующих элементов в металл сварочного шва.
В наплавленном металле наблюдается и прирост примесей цветных металлов, серы и фосфора, по сравнению содержанием в проволоке, за счет перехода их из обмазки электрода. Это обусловлено тем, что в некоторых ферросплавах, используемых в качестве составляющих покрытия, содержание серы и фосфора в 1.5(5.0 раз больше, чем в сварочной проволоке [8]. Доля таких компонентов в покрытиях электродов обычно составляет 15(30 %. В работе [9] установлено, что при наплавке электродами фтористо-кальциевого типа в шлак переходит фосфора 0.001(0.002 %, серы 0.0013(0.004% по отношению к массе расплавленного стержня. Следовательно, гарантировано низкое содержания серы и фосфора в металле сварного шва возможно лишь за счет снижения концентрации этих примесей в компонентах покрытия электродов.
В состав электродных покрытий фтористо-кальциевого типа в основном входит ферротитан, ферромарганец и ферросилиций. Причем наибольшую долю из них занимает ферротитан до 15%. Поэтому газонасыщенность ферротитана и содержание в нем таких примесей как сера, фосфор и цветные металлы существенно влияют на свойства металла сварных швов [2]. Для улучшения свойств сварных швов необходимо использовать в сварочных электородах ферротитан высокого качества с низким содержанием газов и примесей цветных металлов. Следовательно, актуальной задачей материаловедения и сварки является разработка материалов и технологий, позволяющих улучшить структуру и свойства наплавленного металла за счет улучшения качества сварочных электродов.
В связи с выше изложенным для улучшения структуры и свойств наплавленного металла, предложено, при изготовлении электродов типа УОНИ-13 использовать комплексную лигатуру, полученную сплавлением электрошлаковым способом отходов титана с серийными ферросплавами, с использованием эффекта рафинирования активными шлаками.
1. Исследование структуры и свойств наплавленного металла
Для исследования влияния состава ферротитана на свойства наплавленного металла были изготовлены три партии электродов УОНИ 13/55 с различными по составу и способу производства ферросплавами: партия А – по рецептуре с использованием алюминотермического ферротитана ФТи30А и ферросплавов промышленного производства. партия Б – по рецептуре А с заменой ферротитана алюминотермического способа производства ФТи35А на ферротитан электрошлаковой выплавки ФТШ45. партия В – по рецептуре А с заменой всех ферросплавов промышленного производства на 12% опытного комплексно-легированного ферротитана К-2.
Пассивирование сплава К-2 производили в муфельной печи при температуре
350( С в течение 30 мин. Исследование технологического процесса приготовления обмазочной массы и нанесения ее методом опрессовки для всех трех партий электродов, а также процесса возбуждения и горения дуги показало, что каких либо различий в технологичности при изготовлении и наплавке металла между электродами партий А, Б и В не наблюдается (10(.
1.1 Исследование химического состава наплавленного металла
Химический состав металла, наплавленного электродами с покрытиями, содержащими ферротитан разного способа производства, имеет некоторые различия [9] (табл. 1.1, 1.2.).
Таблица 1.1 – Химический состав наплавленного металла
Партия электродов Массовая доля элементов, %
С Si Mn S P
А 0,09 0,05 1,0 0,020 0,020
Б 0,10 0,030 0,80 0,020 0,022
В 0,09 0,035 1,0 0,014 0,016
Паспортный состав 0,08-0,10,2-0,50,6-1,(0,022 (0,024
1 2
Как видно из приведенной таблицы, химический состав металла, наплавленного электродами всех исследованных в работе партий, соответствует требованиям паспорта электродов УОНИ 13/55. Более низкое содержание Si и Mn в металле, наплавленном электродами партии Б и В получено в результате большего вовлечения этих элементов в реакции раскисления металлической ванны, при меньших содержаниях Аl в покрытии электродов партии Б и В
(0,14%) в сравнении с покрытием А (0,96%). Более высокая концентрация Si,
Mn и Тi в металле партии В в сравнении с Б свидетельствует о меньших потерях этих элементов на поверхностное окисление в процессе изготовления электродов при использовании сплава К-2. В металле, наплавленном электродами партии В, содержится наименьшее количество примесей S и P, что является следствием применения комплексно-легированного ферротитана К-2, при получении которого методом ЭШВ использовались отходы титана, содержащие малое количество этих примесей, а промышленные ферросплавы ФМн1 и ФС 45 были рафинированы по S и P высокоосновным флюсом в процессе выплавки.
При этом, в наплавленном металле снижается не только количество S и P, газов (О и N), а также и примесей цветных металлов [8] (табл.1.2).
Таблица 1.2 – Содержание газов и примесей цветных металлов в наплавленном металле
Партия Массовая доля элементов, %
электродов
O N Ti Cu Sn
А 0,050 0,0073 0,011 0,1 0,01
Б 0,046 0,0062 0,018 0,08 0,005
В 0,040 0,0065 0,020 0.08 0,005
При производстве ферротитана и комплексно-легированного ферротитана методом ЭШВ используются отходы Тi в виде листовой обрези, содержащие низкое количество газов (О и N), С и примесей цветных металлов без использования вторичного А1, что полностью исключает возможность их внесения. Поэтому содержание примесей Cu и Sn в металле, наплавленном электродами партии Б и В ниже, чем электродами А.
Количество кислорода в металле, наплавленном электродами партии В, наиболее низкое. Это свидетельствует о более полном раскислении металла шва при использовании в покрытии В комплексно-легированного ферротитана К-2.
1.2 Исследование неметаллических включений в металле шва
Использование ферротитана ЭШВ в покрытии сварочных электродов позволило снизить в наплавленном металле содержание газов, примесей и неметаллических включений.
Результаты оценки загрязненности неметаллическими включениями металла, наплавленного опытными электродами приведены в табл. 1.3.
Таблица 1.3 – Содержание оксидных включений в наплавленном металле
Массовая доля оксидных включений, %
Партия Общее Удельная доля в общем количестве, %
электродов Количество Al2O3 SiO2 Сложные оксиды
(Si-Ti-Mn-Fe)·O
А 0,052 44,5 35,5 20,0
Б 0,043 28,8 20,5 51,5
В 0,030 20,5 16,0 63,5
Проволока Св.-08, 0,005-0,015 59,11 33,14 7,75
Св-08Г2С [2]
Как видно из приведенных в таблице данных, в наплавленном металле электродов партии Б и В существенно снижено общее количество неметаллических включений. В металле, наплавленном электродами В, содержащем только один ферросплав в виде комплексно-легированного ферротитана, полученного методом ЭШВ, общее количество неметаллических включений снижено более чем на 40% в сравнении с металлом электродов А, при использовании алюминотермического ферротитана и раздельным введением в покрытие других раскислителей – ферромарганца и ферросилиция. При этом, количество тугоплавких включений с Al2O3 более чем в два меньше, чем в металле, наплавленном электродами А. В таких же пределах уменьшено содержание стекловидных силикатов. В металле партии Б и В отсутствуют крупные экзогенные частицы тиалита и перовскита, характерных для ферротитана алюмотермического способа производства. При снижении общего количества включений несколько возрастает удельная доля силикатов сложного состава с гетерогенной микроструктурой. Преимущественное формирование силикатов сложного состава и меньшее содержание кислорода в металле, наплавленном электродами В, при равном исходном количестве раскислителей в покрытии этих электродов, свидетельствует о более полном и интенсивном процессе удаления продуктов реакции раскисления при использовании комплексно-легированного ферротитана [5].
1.3 Механические свойства наплавленного металла
Результаты исследования механических свойств металла, наплавленного опытными электродами, представлены в табл. 1.4.
Таблица 1.4 – Механичес...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 2043

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434