Главная / Рефераты / Рефераты по экономико-математическому моделированию

Реферат: Теория экономического прогнозирования


Министерство образования Российской Федерации
Тюменский государственный нефтегазовый университет
В.Г.НАНИВСКАЯ,
И.В.АНДРОНОВА
ТЕОРИЯ ЭКОНОМИЧЕСКОГО ПРОГНОЗИРОВАНИЯ
Учебное пособие для студентов специальностей
06.08.00 «Экономика и управление на предприятиях» и 06.11.00
«Менеджмент»
Тюмень 2000
Нанивская В.Г., Андронова И.В. Теория экономического прогнозирования:
Учебное пособие. - Тюмень: ТюмГНГУ, 2000. — 98 с.
Излагаются теоретические и методические вопросы экономического прогнозирования: системный подход к прогнозированию с учетом особенностей переходного периода; методы прогнозирования и условия их применения; методология разработки экономических прогнозов; информационные и организационные аспекты прогнозирования.
Предназначено для студентов специальности 06.08.00 «Экономика и управление на предприятиях» в качестве учебного пособия по курсу
«Социальное и экономическое прогнозирование», а также специальности
06.11.00 «Менеджмент» по курсу «Разработка управленческого решения».
Для студентов экономических специальностей, аспирантов, научных работников, практиков, занятых в различных отраслях народного хозяйства.
Рецензенты: А.Н.Янин, заместитель председателя Комитета по экономике и финансам Администрации Тюменской области, кандидат экономических наук;
Р.Я.Кучумов, зав. кафедрой прикладной математики Тюменского государственного нефтегазового университета, доктор технических наук, профессор.
ISPN 5-88465-265-8
Тюменский государственный нефтегазовый университет.2000
ВВЕДЕНИЕ
Формирование рыночных механизмов в России в последнее время связано с целым рядом трудностей. Меняются организационные формы функционирования предприятий различных отраслей, усложняются экономические и социальные связи и отношения. Поэтому в деятельности менеджеров упор приходится делать не на стандартные решения, а на способность достаточно оперативно и правильно изменять хозяйственную ситуацию и искать подход, являющийся оптимальным в конкретных условиях.
Основой для такого подхода в принятии управленческих решений является экономическое прогнозирование, призванное выявить общие перспективы и эволюции, тенденции организационно-структурного развития, обеспечить сбалансированность краткосрочных и долгосрочных программ. При этом важно суметь обнаружить всю совокупность факторов и причин, определяющих функционирование и развитие исследуемой хозяйственной структуры.
Трансформация системы экономического прогнозирования является одним из важных элементов преобразований, способствующих нормальному функционированию предприятий в изменяющихся организационно-экономических условиях. Она должна быть направлена на коренные преобразования в прогностике, заключающиеся в развитии способностей решения самых разнообразных задач управления в условиях неустойчивости внешней среды с помощью адекватного инструментария, требующего обоснования и установления сферы его использования.
Однако в условиях усложнения объектов прогнозирования и динамичности внешней среды разработка такого инструментария практически невозможна без освоения теоретических основ прогнозирования, которое, принимая в переходный период беспрецедентные масштабы, является первоосновой всех процессов управления.
В учебном пособии рассматриваются в системном изложении вопросы целевого экономического прогнозирования, исходя из стратегических установок организационно-производственных объектов (включая сложные хозяйственные структуры).
При подготовке пособия авторами были использованы и обобщены исследования крупнейших футурологов, как России, так и зарубежных стран:
И.Бестужева-Лады, Е.М.Четыркина, Б.Г.Рябушкина, Г.Тейла, К.Д.Льюиса,
Л.В.Канторовича, М.Д.Кендэла, А.Т.Гринберга и многих других.
Некоторые вопросы, изложенные в пособии, ориентированы не только на потребности учебного процесса, но и на практикующих специалистов, желающих овладеть методами разработки экономических прогнозов.
1. НАУЧНЫЕ ОСНОВЫ ЭКОНОМИЧЕСКОГО ПРОГНОЗИРОВАНИЯ
1.1. Цели, задачи и виды прогнозов
В условиях социально-экономических преобразований, свойственных переходной экономике, значительно усложняется процесс управления хозяйственными структурами. Это связано как с расширением их прав и обязанностей, так и с необходимостью более гибкой адаптации в окружающей среде. Возникают новые цели и задачи, изменяются формы собственности предприятий, налаживаются новые хозяйственные связи, формируются рыночные механизмы управления. Все появляющиеся в связи с этим проблемы невозможно решить без профессионального менеджмента, который носит характер непрерывного процесса через реализацию функций управления.
Особую роль в современном менеджменте играет стратегическое управление, включающее:
• выработку главной цели бизнеса;
• прогнозирование как предвидение результатов развития, происходящего под воздействием существующих факторов;
• перспективное планирование в качестве системы мер, необходимых для преодоления отклонения прогнозируемых итогов от установленных параметров.
Органической частью планирования является составление прогнозов, показывающих возможные направления будущего развития хозяйственной структуры, рассматриваемой в тесном взаимодействии с окружающей средой. Вся как плановая, так и практическая работа в организации связана с необходимостью прогнозирования. Каждый менеджер и специалист по планированию должен владеть основными навыками и технологией прикладного прогнозирования.
Прогнозирование- это способ научного предвидения, в котором используется как накопленный в прошлом опыт, так и текущие допущения насчет будущего с целью его определения. Результатом является прогноз, т.е. научно обоснованное суждение о возможных состояниях объекта в будущем, об альтернативных путях и сроках его существования.
Прогнозирование определяет реальность и благоприятность для хозяйственной структуры поставленных перед ней целей. Разумеется, что некоторые приемы и средства прогнозирования применяются и в процессе определения целей, особенно долгосрочных, но при выборе целей и определении степени их достижения главную роль играют субъективные факторы, в то время когда прогноз опирается на объективные процессы и явления.
Прогнозирование - это система количественных и качественных предплановых изысканий, направленных на выяснение возможного будущего состояния и результатов деятельности предприятия в перспективе.

Желаемый результат = X
Обычно в прогнозах указывается вероятная степень отклонения от тех или иных целей в зависимости от способа будущих действий и влияния различных объективных факторов (научно-технических, природно-климатических, социально- экономических и политических ) (рис.1.1.).
= Х±У
Рис. 1.1. Вероятный целевой результат (X) и возможные отклонения (У) от желаемого результата
При проведении предплановой работы прогнозы учитывают требования плана, но при этом являются самостоятельной формой предвидения объективного процесса и возможного конечного результата реализации поставленной цели
[41].
В предвидении будущего хозяйственной системы прогнозирование, с одной стороны, предшествует планированию, а с другой- является его составной частью, используется на разных стадиях осуществления деятельности по планированию:
• применяется на этапе анализа среды и определения предпосылок для формирования стратегии системы;
• осуществляется на стадии реализации планов для оценки возможных результатов и их отклонений от плановых показателей с целью организации дополнительных управляющих воздействий на систему для ликвидации отклонений
[9].
Известный отечественный футуролог И. Бестужев—Лада [26] разделил прогнозирование и планирование как предсказание и предуказание.
Предсказание, к которому относится прогнозирование, предполагает описание возможных или желательных аспектов, состояний, решений, проблем будущего.
Помимо прогнозирования к предсказанию относится предчувствие (описание будущего на основе эрудиции, работы подсознания и предугадывание
(использует житейский опыт и знание обстоятельств). Предуказание, включающее в себя планирование и его элементы, -целеполагание, программирование, проектирование, основано на принятии решений о проблемах, выявленных на стадии предсказания, на учете всех критических аспектов будущего [41].
В качестве основных отличий прогнозирования от планирования можно назвать следующие:
• прогнозирование осуществляется в условиях с высокой долей неопределенности или случайности;
• объектом прогнозирования чаще всего являются совокупность хозяйственной системы и внешней среды;
• прогнозирование в большей степени ориентировано на исследование развития внешней среды хозяйственной системы, носит системный характер;
• прогнозирование носит информационный, консультативный характер, принятие решения необязательно, в то время когда планирование носит директивный характер;
• при прогнозировании в связи с большим периодом упреждения и неопределенностью используются более общие расчетные или экспертные нормы
[9].
Таким образом, прогнозирование по своему составу шире планирования, так как включает не только показатели деятельности хозяйствующего субъекта, но и в большей степени учитывает изменяющиеся параметры внешней среды.
Основная функция прогноза — обоснование возможного состояния объекта в будущем или определение альтернативных путей.
Прогноз носит вероятностный характер, но обладает определенной достоверностью. Прогноз на практике - это предплановый документ, фиксирующий вероятную степень достижения поставленной цели в зависимости от масштаба и способа будущих действий [42].
Задачи прогнозирования связаны с тем, что прогноз, помимо анализа возможностей, является основой для разработки стратегии, планирования и управления предприятием. Прогноз должен определять:
- основные технические и организационно-экономические проблемы и сроки их решения;
- материалы, технологические процессы и оборудование, предназначенные для изготовления новой перспективной и традиционной продукции;
-ожидаемые объемы производства продукции у конкурентов и потребность в ней на рынках;
- ожидаемую себестоимость разработки и производства этой продукции;
- мощность предприятия, необходимую для разработки и изготовления новой продукции;
- потребность в трудовых ресурсах с учетом изменения их структуры, квалификации и ожидаемого роста производительности труда. Прогноз должен включать:
- краткий анализ развития прогнозируемого направления производства и характеристику его современного состояния;
- выявление перспективных технических и экономических проблем, уже решенных, но не получивших практического применения;
- оценку важности проводящихся исследований, требующих внимания и затрат для решения будущих проблем [41].
Виды прогнозов можно классифицировать по нескольким признакам:
1) По периоду упреждения (временному охвату):
- оперативные, со сроком до 3-6 месяцев от начала прогноза;
- краткосрочные прогнозы - до 1 года;
- среднесрочные прогнозы - до 5 лет;
- долгосрочные прогнозы - более 5 лет.
Как правило, чем длительней период, на который составляется прогноз, тем значительней может быть отклонение фактических данных от прогнозируемых.
В современных условиях, характеризирующихся неустойчивостью внешней среды, использование фиксированного календарного периода для разработки прогнозов часто затрудняет практическое их использование в менеджменте.
В директивной экономике в основном сложилась практика формирования текущих, кратко-, средне- и долгосрочных прогнозов-программ (соответственно на 1 год, 5, 10 и 20 лет). Главным недостатком такого подхода является то, что календарный период охватывает различные этапы, отличающиеся качественными параметрами (например, этапы жизненного цикла товара, разработки месторождений в добывающих отраслях, изменения производственной мощности и т.п.). Для обеспечения практического использования прогнозов в условиях нестабильной экономической ситуации в периоде прогнозирования следует выделять различные циклы, этапы, фазы развития прогнозируемого объекта. Продолжительность каждого конкретного цикла определяется целевыми установками менеджмента, особенностями объекта прогнозирования (сложной хозяйственной системы или ее подсистем), требованиями к оперативности принимаемых управленческих решений и т.п. При таком подходе прогнозы непосредственно, а не через календарный период, становятся связанным с реальными экономическими процессами [9].
2) В сфере управления народным хозяйством в зависимости от характерных особенностей объекта прогнозирования прогнозы условно делят на:
- социальные;
- научно-технические;
- экономические.
Экономические прогнозы можно воспринимать как всеобъемлющие, содержащие элементы как социального, так и научно-технического прогнозирования.
Задачами экономического прогнозирования являются: предвидение возможного распределения ресурсов по различным направлениям; определение нижних и верхних границ получаемых результатов; оценка максимально возможного количества ресурсов, необходимого для решения хозяйственных и научно-технических проблем и др.
В отличие от экономического научно-технический прогноз определяет вероятное натурально- вещественное состояние прогнозируемого объекта
(системы).
Взаимосвязь экономического и научно-технического прогнозирования показана на рис. 1.2.
Рис. 1.2. Связь научно-технического и экономического прогнозов
Первоначально разрабатываются технические прогнозы, непосредственно связанные с объектом экономического прогнозирования, выявляются и конкретизируются потребности рынка в нововведениях, являющиеся составной частью рыночной конъюнктуры. Далее, исходя из потребностей, содержащихся в социально-экономическом заказе и механизме рынка, разрабатываются прогнозы относительно области возможных путей производства и развития самого объекта прогнозирования [42].
3) По типам прогнозирования различают:
-творческое видение, основанное на использование субъективного мнения прогнозиста, его интуиции;
-поисковое прогнозирование, базирующееся на изучении тенденций развития хозяйственной системы и продлении их в будущее.
Этот вид прогноза дает ответ на вопрос, .что вероятнее всего произойдет при условии сохранения существующих тенденций. Он может быть основой для стратегического планирования.
Поисковое прогнозирование в свою очередь может быть двух видов:
- традиционным, или экстраполятивным;
- новаторским — альтернативным.
Экстраполятивный прогноз предполагает, что экономическое развитие происходит гладко и непрерывно, поэтому прогноз, может быть простой проекцией (экстраполяцией) прошлого в будущее.
Альтернативный подход исходит из того, что внешняя и внутренняя среда подвержены постоянным изменениям, и вследствие этого:
- процесс развития происходит не только гладко и непрерывно, но и скачкообразно и прерывисто;
-существует определенное число вариантов будущего развития хозяйственной системы.
Таким образом, при альтернативном прогнозировании создаются прогнозы, включающие сочетание различных вариантов развития выбранных показателей и явлений. Данный вид прогнозирования может объединить два способа развития — гладкий и скачкообразный, создавая синтетическую картину будущего [1].
Нормативное прогнозирование исходит из общих целей и стратегических ориентиров на будущий период. При данном подходе рассматриваются только рациональные варианты прогноза, т.е. варианты поискового прогноза, которые обеспечивают попадание в требуемое конечное состояние из текущего исходного с учетом существующих ограничений на ресурсы (в том числе, время).
Сопоставление и согласование прогноза на базе указанных двух подходов способствует получению наиболее полного материала для определения политики хозяйственной системы (рис. 1.3.) [41].
4) По возможности воздействия на будущие прогнозы:
- пассивный прогноз - при отсутствии воздействий на среду;
- активный прогноз предполагает активные действия на прогнозирование будущего, реальное воздействие на внешнюю среду.
5) По степени вероятности:
- вариантные, когда имеются несколько вариантов развития системы;
- инвариантные, когда прогноз предполагает только один вариант развития.
Такие прогнозы часто основываются на экстраполятивном подходе, простом продолжении сложившейся тенденции.

Рис. 1.3. Согласование двух подходов к прогнозированию
6) По способу представления:
- точечный прогноз предполагает, что данный вариант имеет единственное значение прогнозируемого показателя;
-интервальный прогноз - это предсказание будущего, в котором предполагается некоторый интервал, диапазон значений прогнозируемого показателя (рис. 1.4).
Социально-экономические прогнозы традиционно разрабатываются поэтапно:
1 этап. Подготовка материалов (сбор, анализ и корректировка) по прогнозируемой проблеме.
2 этап. Разработка (и корректировка) отдельных долгосрочных, среднесрочных и текущих научно-технических и социально-экономических прогнозов:
2.1 .анализ тенденций и проблем;
2.2.разработка прогнозов в составе предполагаемой комплексной программы.
yt
Период наблюдения Период упреждения прогноза t
Рис. 1.4. Точечный и интервальный прогнозы
Условные обозначения: e - точность прогноза, абсолютная погрешность;
Уt - прогнозируемый показатель
Особой сложностью обладают макроэкономические прогнозы, разрабатываемые на уровне народного хозяйства и отдельных отраслей (рис.1.5.).
Процесс прогнозирования можно разбить на несколько стадий:
• формулирование задания на разработку прогноза (предпрогнозная ориентация);
• собственно прогнозирование объекта;
• верификация (оценка достоверности прогноза).
Проиллюстрировать последовательность разработки экономического прогноза можно на примере отраслевого подхода, который включает:
• описание и анализ развития отрасли за ретроспективный и настоящий периоды, включая оценку результатов;
• прогноз основных направлений развития отрасли на основе поискового подхода;
• постановку целей и основных задач развития отрасли, прогноз основных тенденций развития на основе нормативного метода;
• выявление «разрывов» между показателями нормативного и поискового методов, разработка путей решения проблем на основе вариантов развития отрасли с, учетом ограничений внешнего и внутреннего характера;
• выбор варианта развития и подготовка исходной информации для межотраслевого баланса.
Таким образом, технология построения экономических прогнозов представляет собой сложный многошаговый процесс, который невозможно реализовать без выработки научной теоретико-методологической основы прогностических расчетов.
1.2. Системный подход к экономическому прогнозированию
Овладение системными знаниями и их практическое использование в процессе экономического прогнозирования составляет основу научного подхода к принятию управленческих решений по результатам прогнозного моделирования.
Важнейшими инструментами в процессе прогнозирования являются системный анализ и системный подход.
Системный анализ - это совокупность конкретных методов и практических приемов решения различных проблем, возникающих во всех сферах целенаправленной деятельности общества на основе системного подхода и представления объекта прогнозирования в виде системы. Системный подход позволяет найти вариант решения сложных производственно-хозяйственных проблем в условиях достаточно высокой неопределенности поведения системы и неполноты знаний о ней [25].
Система - это абстракция, которая отражает системные качества, присущие предметам, явлениям и другим объектам прогнозирования. Систему можно рассматривать также как множество взаимодействующих элементов, находящихся в отношениях и связях друг с другом и составляющих целостное образование.
Процедура системного анализа в прогнозировании представляет собой профамму исследования экономической системы с целью поиска наилучшей альтернативы управления. Она включает ряд этапов:
• определение целей и задач исследования и критериев их достижения;
• определение объекта и предмета исследования;
• сбор и обработку информации;
• выявление структуры объекта, описание его свойств;
• определение целей жизнедеятельности объекта;
• построение гипотез о механизме функционирования объекта;
• исследование объекта с помощью моделей и неформальных методов, включающее уточнение целей и гипотезы о механизме функционирования объекта, корректировку моделей, определение перечня возможных альтернатив управления;
• прогнозирование последствий реализации выбранных альтернатив управления и выбор из них наиболее рациональной [37].
По причине усложнения структуры хозяйствующих субъектов в условиях переходной экономики (например, создания сложных хозяйственных корпоративных структур) достаточно проблематично провести анализ и прогнозирование развития всей системы в целом. В этом случае следует прибегнуть к декомпозиции - разделению системы на части, и исследовать эти части как самостоятельные объекты.
Декомпозицию сложной хозяйственной структуры можно провести, выделяя входящие в ее состав подсистемы, т.е. крупные составляющие, которые по своему составу также являются сложными системами. Выделенные подсистемы должны: оказывать влияние на достижение конечных результатов системы; быть привязаны к целому с помощью определенных отношений каждой части к общественной характеристике (или характеристикам), имеющей необходимую и функциональную логическую связь с выполнением задач всей системы; быть созданы по признакам, обнаруживающим необходимую функциональную связь друг с другом и с системой в целом; объединять более мелкие подсистемы, позволяющие объяснить и понять поведение системы в целом; быть увязанными с поведением всех элементов системы через ее подсистемы для связи с внешней средой.
Процесс декомпозиции сложной хозяйственной структуры следует начинать с вычленения управляющей и управляемой подсистем. Подобная декомпозиция позволяет выделить объекты и субъекты на каждом уровне управления, причем объект одного уровня одновременно может выступать субъектом другого.
На последующих этапах декомпозиции хозяйственной структуры выделяются и структурируются организационная и функциональная компоненты, определяется структура производственного процесса и устанавливаются связи между элементами системы.
Декомпозицию можно продолжить с целью более детальной структуризации объекта. Тем самым обеспечивается декомпозиционно-синтетический подход при изучении развития сложных хозяйственных структур.
Усложнение структуры объектов прогнозирования приводит к тому, что утрачивается гибкость реакции в результате изменения параметров внешней среды. В результате затрудняется и замедляется передача информации, что не может не сказаться на скорости и своевременности принятия решений.
Из всех функций управления практически одна, а именно прогнозирование
(планирование), позволяет повысить эту гибкость и свести к минимуму все негативные моменты (в частности, повысить оперативность в принятии управленческих решений на основе прогнозов). В процессе прогнозирования устанавливаются возможные направления развития предприятия в будущем на основе анализа тенденций этого развития, определяются цели, средства, а также разрабатываются методы, наиболее эффективные для управления в конкретных условиях. Прогнозирование тесно связано с другими функциями управления (рис. 1.6.).
Данный цикл является ничем иным, как движением информации, где переход от одной функции к другой есть передача потока информации, а сами функции — это обработка информации с помощью различных способов и методов; документирование; принятие функциональных решений; возникновение новой информации. При этом поток информации, идущий от таких функций, как прогнозирование (планирование), организация, мотивация, координация и регулирование, несет в себе воздействие управляющей системы на управляемую, то есть аппарата управления на производственные и функциональные подразделения предприятия. Информация, обрабатываемая на стадиях учета, контроля и анализа, дает аппарату управления сведения о результативности этих воздействий.
Приведенная модель процесса управления представляет собой идеальную конструкцию. Однако в реальной практике такая модель не всегда реализуется полностью. Некоторые функции могут не включаться в цикл управления или включаться изредка. Некоторые выполняются лишь поверхностно. Иногда функции между собой не имеют четкого разделения и реализуются параллельно.
Следует иметь в виду, что эффективность реализации функций зависит не от того, в каком объеме они выполняются, а от того, насколько оптимальным будет принято решение, основанное на результатах реализации той или иной функции, и насколько точно оно будет исполнено.
Все управленческие решения, в чем бы ни заключался их смысл, и на реализацию какой функции управления они бы ни были направлены, всегда связаны с целью приведения объекта управления в желаемое состояние. Это состояние можно оценить качественно и количественно. Для формирования системы этих показателей первоначально необходимо четко сформулировать цель развития хозяйственной структуры.
Определение целей развития экономических объектов следует начинать уже с процесса прогнозирования (а не в ходе планирования, как это обычно делают, превращая прогнозирование лишь в метод поиска основных тенденций, в то время как оно должно являться инструментом управления и принятия решений). Первоначально необходимо сформулировать глобальную (главную, основную) цель, а затем осуществить ее декомпозицию на подцели.
Декомпозиция целей во времени и пространстве в соответствии с организационной структурой предприятия образует иерархическую структуру задач, последовательное и параллельное решение которых должно обеспечить достижение цели (иерархию целей).
Глобальная цель может быть представлена как иерархическая совокупность множества взаимосогласованных и взаимодействующих целей локальных уровней.
Ее можно представить в виде древовидной структуры («дерева целей») - Z.
Z={Z0,Zkl,Zik,...,Zin},
(1.1)
где Zo - начальный момент (цель, мероприятие, ресурс);
Z - множество элементов на i-ом уровне (локальные цели i-го уровня);
I - номер уровня дерева взаимосвязей; n - количество элементов на i-ом уровне.
Для оценки состояния хозяйственной структуры до и после осуществления прогнозирования и управленческого воздействия на его основе необходим обоснованный критерий, который выражается как некоторая функция от состояния системы. Критерий выступает в виде признака, по которому функционирование системы признается наилучшим из возможных вариантов. Для сложных хозяйственных структур, в силу их многогранности, критерий является многомерным фактором, который включает в себя в качестве компонентов параметры эффективности. К параметрам эффективности относят наиболее важные параметры системы, которые позволяют оценить качество решения проблемы и достижение поставленных целей. Ими могут выступать стоимость, доход, прибыль (убытки) и т.д. [8]. Результатом системного анализа является создание системной модели объекта прогнозирования. Модель системы позволяет лучше понять объект. При разработке прогноза желательно создать типовое представление .(абстрактную модель) изучаемого объекта, позволяющее применять при анализе и последующем прогнозном моделировании некоторого абстрактного типового аналога с унифицированным набором исходных данных и связанных с ним приемов диагностики и прогнозирования.
Типовое представление сложной структуры позволит получить минимальный набор информации об объекте и субъекте, корректно решать задачи управления ими.
В экономической литературе [8,9] типовые представления делят на два класса:
• кибернетические, абстрагирующиеся от структуры представляемого объекта (к этому классу относят модель «параметр-поле допуска»);
• некибернетические, то есть учитывающие структуру объекта.
Некибернетическое представление, в свою очередь, может быть функционально- декомпозиционным, представленным в виде контуров обслуживания, или агрегативно-декомпозиционным.
При функционально-декомпозиционном представлении, исходя из располагаемой информации, составляется функциональный портрет объекта прогнозирования, где фиксируются участие подсистем в реализации определенных функций цели системы. В состав таких портретов может включаться информация об участии подсистемы в реализации целевой функции, характеристики подсистемы с точки зрения разработки (например, производственные площади, объемы финансирования и т.п.).
Преимуществом такого представления является небольшой объем исходной информации, что позволяет проводить анализ сверхсложных систем, а также систем на начальных стадиях разработки.
Представление в виде контуров обслуживания основано на определении набора взаимосвязанных элементов, функционирование которых направлено на решение задач управления процессом в системе, при этом объект рассматривается в виде взаимосвязанной совокупности технологических процессов.
При агрегативно-декомпозиционном представлении сложная система рассматривается как агрегат, который в каждый момент времени находится в определенном состоянии, имеет входные каналы и выходные сигналы.
Агрегатное представление более наглядно и может быть рекомендовано для использования при типовом представлении объекта исследования. Схематично представление объекта прогнозирования в виде агрегата показано на рис. 1.7.
На выходе типового агрегата находится соответствующий товар с присущими ему качественными характеристиками.
Типовое представление объекта прогнозирования в дальнейшем поможет подобрать адекватный метод разработки прогноза.
Как ранее было отмечено (см. п. 1.1), процедуре прогнозирования предшествует подготовительный исследовательский этап. На этом этапе осознаются, структурируются и четко формируются цели прогноза, то есть из прогнозной среды выделяется объект прогнозирования как целостная система, фиксируется соответствующий цели аспект ее функционирования и развития, проводится структурная декомпозиция и строится многоуровневое описание.
Внешняя среда
Вход
Выход
Выход
Обратная связь
Рис. 1.7. агрегативно-декомпозиционное представление объекта прогнозирования
Условные обозначения:
1.1 - повышение качества продукции;
1.2 - ресурсосбережение на всех стадиях технологической цепочки;
1.3 - расширение рынка сбыта;
1.4 - организационно-техническое развитие производства (в т.ч. внедрение инноваций);
1.5 - социальное развитие коллектива и охрана окружающей среды;
2.1 - ресурсное обеспечение (сырье, материалы, ввод мощностей);
2.2 - информационное обеспечение;
2.3 - правовое обеспечение;
3.1 - организация процессов основного и вспомогательного производства;
3.2 — мотивация;
3.3 - регулирование;
3.4 - маркетинг;
3.5 - планирование;
3.6 - учет и контроль по центрам ответственности;
4.1 - управление персоналом;
4.2 - разработка и реализация управленческих решений;
4.3 - анализ в принятии решений;
4.4 - прогнозирование в принятии решений.
Описание исходного состояния (анализ) исследуемой системы отражает степень информированности к началу прогнозирования и содержит исходную гипотезу о механизме ее функционирования и развития.
Таким образом, на подготовительном этапе создаётся информационная (в широком смысле) база для проведения прогнозных исследований.
Процесс прогнозирования может быть представлен как некоторое операторное преобразование(П) исходной информации об исследуемом объекте в виде её отображения на будущее, ограниченное глубинной прогноза:
П : {I, tyn} >Iyn,
(1.2)
где П – оператор прогнозирования;
I – информация об исходном состоянии объекта; tyn – период упреждения прогноза;
Iyn – результат прогноза.
Зависимость (1.2) для сложных хозяйственных систем может быть представлена в более детальном виде:
П : {I, Ц, U, tyn}>Iyn,
(1.3) при условии, что
Ц ? Ц?? U ?? U ? Uґ?? tyn ? tyn ? I? ? I ? Iґ?,
(1.4)
Где Ц – область целей системы в пространстве;
U – уровень управления в принятой декомпозиции системы;
Ц?, U?, Uґ?, I?, Iґ?­ tyn – горизонт прогноза, т.е. максимально возможный период упреждения.
Для хозяйственных многоуровневых систем оператор прогнозирования П представляет собой иерархическую структуру. Например, для трёхуровневой системы
П={Псk,{П?jk},{П?ijk}},
(1.5) где Псk – оператор прогнозирования высшего уровня;
{П?jk} – множество операторов прогнозирования второго уровня;
{П?ijk} – множество операторов прогнозирования третьего уровня; i,j,k – число параметров, описывающих систему на каждом уровне.
Таким образом, описание рассматриваемой трехуровневой системы реализуется в виде иерархии численных параметров системы и ограничений на области их области их возможных значений.
В рассматриваемой формальной постановке исходная информация о состоянии рассматриваемого объекта (I) отделена от механизма его функционирования
(П). Структура этой информации может быть представлена тремя основными составляющими:
Iу - параметры состояния системы, поддающиеся целенаправленному изменению;
Iну - параметры, эволюция которых не поддается управлению, т.е. не зависит от воли людей;
Iвн - параметры внешней среды, не поддающиеся изменению в рамках рассматриваемой системы.
В результате получаем
(1.6)
I= {Iу,Iну,Iвн}.
Для прогнозных задач остаточную неопределенность будущего состояния исследуемого объекта определяют 1ну и 1вн.
Поэтому для принятия управленческих решений на основе прогноза должен быть определен перечень возможных последствий при определенных, возможных в будущем условиях 1ну и 1вн. Это означает, что принятию решения должен предшествовать выбор условий, которые, по мнению лица, принимающего решения, наиболее вероятны.
Другим источником неопределенности является неясность и неоднозначность целей функционирования и развития системы. В процессе прогнозирования цель должна быть сформулирована достаточно конкретно. Задача прогноза - определить границу области реальных (достижимых) целей в различных условиях будущего развития системы (при различных Iну и Iвн)[37].
Таким образом, прогнозирование связано с неопределенностью в оценке последствий каждого управленческого решения. Эта неопределенность связана также с тем, что за период с момента получения информации об объекте управления (хозяйственной системе) до момента исполнения управляющего воздействия на систему могут происходить:
• старение информации;
• изменение функций, структуры, параметров объекта прогнозирования;
• изменение функций, структуры, параметров внешней среды.
При разработке прогнозов следует иметь в виду, что каждое управленческое решение по своей природе является прогнозным. Эффективность принимаемых решений может быть обеспечена системным единством процессов прогнозирования и планирования, осуществляемых в определенной последовательности: «поисковый прогноз - нормативный прогноз- стратегическое планирование — бизнес-планирование - перспективное планирование - текущее планирование - оперативное планирование» [9].
Соблюдение системного единства и последовательности этапов позволяет раскрывать неопределенности, связанные с внешней средой и состоянием самого объекта прогнозирования. Игнорирование отдельных элементов данной системы может привести: к снижению точности прогнозирования-планирования и эффективности принимаемых управленческих решений; к повышению риска при принятии решений.
Таким образом, квалифицированный, профессионально подготовленный экономист-менеджер должен обладать системными знаниями о науке прогнозирования, что поможет ему при разработке обоснованных управленческих решений.
1.3. Инерционность экономических процессов как основа экономического прогнозирования
Принципиальная возможность экономического прогнозирования основывается на закономерном (детерминированном) характере изменения различных показателей и на инерционности технико-экономических процессов [39].
Инерционность в развитии хозяйственных структур проявляется двояким образом:
• как инерционность взаимосвязей, т.е. как сохранение в основных чертах механизма формирования явления (инерционность первого рода);
• как инерционность в развитии отдельных сторон процессов, т.е. как некоторая степень сохранения их характера (темпов, направления, колеблемости основных количественных показателей) на протяжении сравнительно длинных хронологических отрезков (инерционность второго ро- да).
Степень инерционности зависит от такого фактора, как размер или масштаб изучаемой хозяйственной структуры или процесса. Если рассматривать производственную систему, то чем ниже уровень в иерархии «предприятие — отрасль - народное хозяйство», тем менее инерционными оказываются соответствующие характеристики.
Последнее обстоятельство можно объяснить тем, что влияние отдельного фактора (например, внедрение инноваций) на низовом уровне часто оказывается доминирующим. На макроуровне показатели более устойчивы, поскольку на их значение оказывает воздействие уже гораздо большее число факторов.
Изменение действия ряда из них (иногда оказывающих противоположное влияние) приводит к меньшей потере инерционности, чем на микроуровне.
Опыт свидетельствует о том, что чем «моложе» изучаемая система
(хозяйственная структура, экономическое явление, процесс) и, соответственно, чем меньше имелось времени для формирования более или менее устойчивых взаимосвязей и основных тенденций в ее развитии, тем меньшей инерционностью она обладает.
Наличие инерционности не означает, что экономическая система в своем развитии будет жестко следовать уже наметившейся тенденции. Различные факторы будут в большей или меньшей степени воздействовать на систему, приводя к отклонениям от тенденции.
Прогнозирование инерционных систем осуществляется через анализ области возможного, то есть того, что возможно в будущем. Теория прогнозирования рассматривает понятие возможности как форму детерминации. Различают два типа детерминации [37]:
• внутренняя детерминация, свойственная целостным сложным системам, обладающим внутренним источником саморазвития (социальные системы);
• внешняя детерминация, предполагающая выделение устойчивых, относительно неизменных отношений, когда исследуемая система рассматривается как нечто постоянное, устойчивое. Это более простая форма детерминации.
Принцип внешней детерминации предполагает проверку изучаемой системы на устойчивость. Это означает, что не любая комбинация свойств и состояний элементов, образующих целостную социально- экономическую систему, возможна в будущем, а только та, которая образует определенную устойчивую форму, отражающую сущность этой системы.
Критерий устойчивости позволяет проводить отбор только тех вариантов будущего, которые могут реально существовать.
Для определения типа инерционности экономической системы необходимо выяснить, присутствует ли в динамических рядах технико-экономических показателей тенденция (тренд). Выяснение типа инерционности позволяет в дальнейшем подобрать адекватный метод прогнозирования (например, при инерционности первого рода это могут быть регрессионные модели, носящие стационарный характер, а при инерционности второго рода - экстаполяционные модели или авторегрессия).
Основная задача анализа временных рядов состоит в выделении детерминированной составляющей (тренда) и случайной составляющей, а также в оценке их характеристик.
В общем виде временной ряд можно представить как
yt = f (t,xt) + ?t, t = 1,2,...,T,
(1.7)
где у, - значения показателей временного ряда; f (t,xt) -детерминированная составляющая; х, — значения детерминированных факторов, влияющих на детерминированную составляющую f в момент времени t;
?t - случайная составляющая;
T- длина временного ряда.
В экономике часто роль детерминированной составляющей играет результирующий показатель, например, объем производства, обусловленный общей тенденцией экономического роста, темпами и объемами инноваций, затратами ресурсов. На этот результат, кроме экономических факторов, могут оказывать долговременное влияние также некоторые природные факторы.
Случайная составляющая аккумулирует влияние множества не включенных в детерминированную составляющую факторов, каждый из которых отдельно оказывает незначительное влияние на результат.
Многие исследователи [10,21,26,32] при анализе динамических рядов выделяют следующие четыре основные составляющие:
• долговременную эволюторно изменяющуюся составляющую, которая является результатом действия факторов, приводящих к постепенному изменению данного экономического показателя. Так, в результате научно-технического прогресса, совершенствования организации и управления производством относительные показатели результативности и эффективности производства растут, а удельные расходы ресурсов на единицу полезного эффекта снижаются;
• долговременные циклические колебания проявляются на протяжении длительного времени в результате действия факторов, обладающих большими последствиями, либо циклически изменяющихся во времени (кризисы перепроизводства, периодические природные явления);
• кратковременные циклические колебания (сезонная составляющая) показывают колебания факторов в зависимости от времен года (продуктивность сельского хозяйства, сезонные колебания розничного товарооборота);
• случайная составляющая образуется в результате суперпозиции большого числа внешних факторов, не участвующих в формировании детерминированной составляющей и оказывающих незначительное влияние на изменение значений показателей.
Для выявления типа инерционности необходимо проверить зависимость показателей от временного фактора. Для этой цели, в частности, можно порекомендовать метод, разработанный Ф.Фостером и А.Стюартом, предложившими по данным исследуемого ряда определять величины и, к I путем последовательного сравнения уровней ряда динамики [39]:
ut =
lt =
Далее определяется две простые характеристики s и d:
s=Sst,
(1.10)
d=Sdt,
(1.11)
где: st = ut+lt,
и dt=ut-lt,
(1.12)
Суммирование в формулах (1.10) и (1.11) производится по всем членам ряда. Полученные показатели s и d используются для проверки гипотезы об отсутствии тенденции (s - б средней, d - в дисперсии) в динамике исследуемого экономического показателя. Проверку гипотезы проводят, применяя t-критерий Стьюдента, то есть определяя:
tн=(d-0)/(?1),
(1.13)
tн=(s-µ)/( ?2),
(1.14)
где µ — математическое ожидание величины s;
? - средние квадратические 0, изменения величин s и d.
Значения, µ, ?1 и ?2 табулированы. Если tн ? tкр то гипотеза о наличии тенденции отвергается, tкр находят по таблицам критических точек распределения Стьюдента в зависимости от уровня значимости гипотезы а
(обычно выбирается на уровне 0,05) и числа степеней свободы k: k = n – 1,
(1.15)
где n — число уровней ряда.
Если же tn min,
(2.3)
где ?, - расчетные (теоретические) значения тренда;
у — фактические значения ретроспективного ряда;
n — число наблюдений.
Подбор модели в каждом конкретном случае осуществляется по целому статистически ряду критериев (дисперсии, корреляционному отношению и др.).
Кроме того, для выбора зависимости
?t=f(t) существует несколько подходов. Это метод последовательных разностей, метод характеристик прироста, визуальный (глазомерный) выбор формы. Расчет оценок прироста показателя, дополненный визуальным выбором взаимосвязи, уменьшает риск неправильного выбора модели для прогнозирования. В частности, могут быть рекомендованы следующие аппроксимирующие зависимости:
? Y / ? t = const > ?t =a0 + a1 t,
(2.4)
? ln y / ? t = const > ?t = a0 ta,
(2.5)
? ln y / ? ln t = const > ?t = a0 tt1,
(2.6)
? Y2 / ? X2 = const > ?t = a0 + a1 t + a2 t2,
(2.7)
? (t / y) / ? t = const > ?t = t / (a0 + a1 t).
(2.8)
В Приложении 1 показаны графические зависимости, позволяющие осуществлять визуальный выбор формы зависимости прогнозируемого показателя от фактора времени, а в Приложении 2 - системы нормальных уравнений, применяемые для оценки параметров полиномов невысоких степеней.
Для выявления более четкой тенденции уровни, нанесенные на график, можно сгладить (элиминировать) с помощью трех приемов:
• метода технического выравнивания - когда на графике визуально (на глаз) проводится равнодействующая линия, отражающая на взгляд исследователя тенденцию развития;
• метода механического сглаживания - расчет скользящих и экспоненциальных средних;
• метода аналитического выравнивания - построение тренда.
Преимущество трендовой модели в более высокой степени надежности. Кроме того, она позволяет экономически интерпретировать параметры уравнения тренда и достаточно наглядно изображает тенденцию и отклонения от нее на графике.
В рыночной ситуации можно порекомендовать конкретные виды функций, наиболее пригодные для экстраполяции [29].
Спрос на ряд непродовольственных товаров может быть описан степенной функцией или экспонентой (особенно на активных этапах жизненного цикла товаров). Общие закономерности спроса отражаются кривой Гомперца. При изучении влияния фактора времени на спрос может быть использована логистическая (сигмоидальная) кривая. Процесс затухания роста спроса по мере перехода населения к группам населения с более высоким доходом отражается полулогарифмической кривой.
В развитии рынка как единого экономического пространства (как и в развитии локальных рынков) могут проявиться определенная повторяемость, цикличность, обусловленная как внутренними свойствами рынка, так и внешними причинами.

Рис. 2.3. Моделирование тенденции продажи товара по стадиям жизненного цикла
Условные обозначения:
1 - выведение товара на рынок; 2 - рост; 3 - зрелость; 4 - упадок; 5 - реанимация спроса.
Внутригодовая цикличность носит часто сезонный характер.
При изучении сезонных процессов часто применяется спектральный анализ, который позволяет прогнозировать тенденции, динамика которых содержит колебательные или гармонические составляющие [31].
Сезонные волны можно описать гармоникой ряда Фурье:
?=?0+Smk(?k coskt + bk sinkt), (2.9)
где t- номер гармоники ряда Фурье;
ао и аk, bk — определяют по МНК;
k - число гармоник (1,2,...)
В условиях переходной экономики возрастает значимость прогнозирования жизненного цикла товара (ЖЦТ). Автором концепции ЖЦТ считается известный маркетолог Теодор Левитт, предложивший ее в 1965г.
Суть прогноза заключается в том, чтобы определить, как надолго и насколько интенсивно будет сохраняться спрос на данный товар. Прогноз ЖЦТ - многоплановый процесс, важной составляющей которого является подбор для каждого этапа соответствующей трендовой модели, отражающей не только рост, стабилизацию или спад, но и степень ускорения или замедления этих процессов. Такой прогноз является составным элементом прогнозирования покупательного спроса и рыночной конъюнктуры.
Жизненный цикл товара можно графически смоделировать в виде сложной кривой (рис. 2.3).
Математически смоделировать весь жизненный цикл товара практически невозможно, пришлось бы использовать сложную многочленную функцию, которую трудно интерпретировать. Целесообразно использовать метод линейно-кусочных агрегатов, то есть моделировать и прогнозировать каждый этап ЖЦТ с помощью трендовой и (или) многофакторной модели, отражающей закономерности каждого этапа.
Отмеченные ранее методы механического выравнивания могут также выступать в роли самостоятельных методов статистического прогнозирования.
Прогнозирование на основе адаптивных скользящих средних производится с использованием следующих формул:
Mi = Mi-1 + (yi - yi-m) / (m),
(2.10) где Mi – скользящая средняя, отнесенная к концу интервала.
Mi = ?t = (St+pi=1 yi) / (m).
(2.11)
Первый член уравнения (2.10) – Мi-1 несет «груз прошлого» - инерцию развития, а второй адаптирует среднюю к новым условиям. Таким образом, средняя как бы обновляется, «впитывая» информацию о фактически реализуемом процессе (степень обновления определяется весом 1/т).
Экспоненциальные средние. Влияние прошлых наблюдений должно затухать по мере удаления от момента, для которого определяется средняя. Для этой цели используют экспоненциальное сглаживание, применяемое в краткосрочном прогнозировании (идея Н.Винера):
Qt = ? ? yt + (1+?) ? Qt-1,
(2.12)
где Qt - экспоненциальная средняя на момент t; а - коэффициент, характеризующий вес текущего наблюдения (параметр сглаживания).
При расчете по формуле (2.12) необходимо выбрать Qt-1. Часто
Qt-1 принимают равным yt.
Применение метода успешно, когда ряд имеет достаточно большое число уровней. Чем меньше а, тем больше роль «фильтра», поглощающего колебания 0< а rij ; ryj > rij ; rij > 0,8 ,
(2.19)
где rij — парные коэффициенты корреляции.
3. На заключительной стадии производят окончательный отбор факторов путем анализа значимости вектора оценок параметров различных вариантов уравнений множественной регрессии с использованием критерия Стьюдента:
tрасч > tk,a,
(2.20)
где k - число степеней свободы,
а- уровень значимости.
В процессе анализа решается проблема мультиколлинеарности, которая заключается в том, что между факторными признаками может существовать значительная линейная связь, что приводит к росту ошибок оценок параметров регрессии.
Таблица 2.3
Матрица парных коэффициентов корреляции множественной модели регрессии
У X1 Х2 … xj … xm
у 1 ryl rу2 … ryj … rут
X1 r!у 1 R12 … rlj … rml
Х2 r2у R2l 1 … R2j … r2т
… … … … … … … …
X1 riy ril Ri2 … 1 … rim
… … …...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 1090

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!