Главная / Рефераты / Рефераты по экономико-математическому моделированию

Реферат: Экономическая кибернетика


Эк. Кибернетика.
Игра – матем. Модель конфликтной ситуации.
Стратегия игрока – это правила выбора действий в сложившейся ситуации.
Решение игры – это нахождение оптимальной стратегии для каждого игрока, т.е. нахождение цены игры.
Оптимальная стратегия игрока – это стратегия, которая в среднем (настрив. на длительную игру) дает игроку возможный наибольший выигрыш.
Неонтогонистическая – если выигрыш одной из сторон склад. из проигрыша др. стороны, иначе антогонистическая – выигрыш одного равен проигрышу др.
Матричные игры.
- самые простые игры. Играют 2 чел. У каж конечное число стратегий. Список стратегий известен каж играющему, т.е. игра с полной инф. Игра одноходовая.
Величина выигрыша известна заранее, опис. В числовых единицах. Оба дейст.
Сознательны, никто не поддается. Игра яв-ся антогонистической. Правила определяют победителя.
Игры с седловой точкой обладают св-м устойчивости – если один игрок примен оптим стратегию, то др. игроку не выгодно отклон-ся от своей оптим стратегии.
Первонач сведен по т. вероятности.
Случайные событие – это событие, которое может произойти или не произойти в данной ситуации.
Вероятность – это количественная характеристика, мера появ-я событий.
P(А)=(число благопр. событий)/(общее число событий).
М(х)=(i хipi – матем. ожидание.
D(x)=(i х2ipi – (M(x))2 – дисперсия.
((x)=(D(x) – средне квадратичное отклонение – показывает степень разбросанности значений случайной величины относительно матем. ожидания.
Правило 3 сигм (():
P(M(x)-3((x)0); S*B - оптим стратегия.
Неактивная стратегия – вероятность применения, которой в оптим стратегии равна нулю.
Теорема устойчивости: Если один игрок применяет свою оптим стратегию, то 2 игроку не выгодно выходить за рамки своих активных стратегий.
Теорема: В матр. игре количество активных стратегий у каж игрока одинаковое.
Применение решений в усл. неопределенности.
Рассмотрим игру человек и природа. Человек – лицо принимающее решение.
Природа – экон-я среда в состоянии рынка.
Отличия от матричной игры: Активные решения принимает только чел, он хочет найти наиболее оптим решение. У природы стихийное поведение и она не стремится к выигрышу. Считается, что чел знает список сост природы, но не знает какое из них будет фактическим. В игре с природой чел труднее сделать свой выбор, поэтому сущ несколько подходов нахождения оптимального решения.
Подход определяется склонностью чел к риску.
Риск – это может быть упущенная выгода или необход понести дополнит произв- е затраты.
Элементы матрицы – это ожидание резуль. Деятельности в завис от сост природы.
1) Подход махмах “оптимистический”: В каж точке мы находим макс элемент и после этого находим макс из полученных чисел. (i=maxj aij((=maxi(i=(i0( выб
Аi0.
Выбираем макс значение. Чел ориентир на самый лучший возмож результат, не обращ внимание на возмож неудачи.
2) Критерий Вальда – критерий пессимизма: Находим в каж строчке миним элемент и выбираем ту стратегию, которая дает макс гарантируемый доход.
(i=minj aij((=maxi (i=(i ( выб Аi0.
3)Критерий Гурвица (() – ур пессимизма: Человек выбирает 0(((1. Находим число (i=((i+(1-()(i ((maxi(i=(i0 (выб Аi0. Если (=1 – кр Вальда
(пессимизма), если (=0 – кр оптимизма. Конкретная величина ( опред-ся эк- ой ситуацией.
4) Критерий Сэвиджа – кр минимального риска: Состав март риска по формуле rij=(j-аij. (ij=max aij ( rij=(j-aij.
R=(rij) –матр риска; ri=maxj rij( mini ri=ri0 ( выб Аi0.
Если бы мы знали, то мы бы выбрали наиболее эф-е решение. Для самого эф-го решения: rij=0 (если Пj) ( Аi. Риск = величине упущенной возможности.
У каж критерия есть свои особенности применения. Если мы оценив ситуацию по разным критериям, то мы можем принять более обоснован решение. Трудность обоснования яв-ся, что природа не стремится к выигрышу.
Принятие решения в усл риска.
Рассотрим вариант игры чел и природы в случаи, когда нам известно сост природы. Природа к выигрышу не стремится. Находим стратегию, которая приносит макс средний доход. Средний доход расчитывается по правилу теории вероятности.
Величина среднего дохода равна матем ожиданию при этой стратегии.
1) М(Ai)=n(j=1aijpj Находим макс maxi M(Ai)
2) Правило минималь среднего риска. R=(Ai)=n(j=1rijpj. Находим наимень mini
R(Ai).
Лемма: Указ выше 2 критерия в результате всегда приводят к выбору одной и той же оптим стратегии.
Док-во: Найдем миним сред риска mini R(Ai)= mini (jrijpj= mini ((j((j- аij)pj)= mini ((j(j pj-(jаijpj)=((j(j pj – не зависит от переменной i, значит это const С(= mini (С-(jаijpj)( минимум разности соот-ет максимуму вычитаемого. maxi (jаijpj=M(Ai).
Номера стратегий, на которых достиг миним среднего риска, равны номерам стратегий обеспеч наиболь средний выигрыш.
Бейссовский подход нахождения оптимального решения.
Бейсовский подход: Если первонач распредел вероятности мы получ доход (Q(.
Если мы можем провести эксперемент дающий новое распред вероятности в завис от первонач (Q(и нового (Q’ , мы делаем свой выбор стратегии. p((Q’(.
Некоторые св-ва матричной игры.

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 1037

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!