Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Охлаждение, компрессионная машина - Рефераты по теплотехнике - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по теплотехнике

Реферат: Охлаждение, компрессионная машина



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
Пояснительная записка к комплексному курсовому проекту
«»
Исполнитель
Руководитель
Минск
2000
ВВЕДЕНИЕ
В газотурбинных установках и компрессионных машинах маслоохладители обеспечивают отвод тепла , полученного маслом в подшипниках , редукторных передачах и других элементах . Охлаждение масла производится водой , охлаждаемой в градирнях . В некоторых случаях охлаждение производится проточной водой . Теплообмен между маслом и водой осуществляется в кожухотрубных многоходовых маслоохладителях с кольцевыми или сегментными перегородками между ходами .
В этих аппаратах осуществляется веерное или зигзагообразное течение масла с поперечным обтеканием труб , близким по характеру к обтеканию труб в шахматном пучке . Веерное течение масла осуществляется в маслоохладителях с кольцевыми перегородками , а зигзагообразное – с сегментными . Требуемое число ходов со стороны масла обеспечивается изменением количества перегородок , установленных на пучке труб между трубными досками . В результате значительно уменьшается число креплений труб в трубных досках и снижается трудоемкость изготовления аппарата по сравнению с одноходовой конструкцией . Одновременно с этим снижается эффективность теплообмена в результате перетекания масла из входа в ход через технологические зазоры между перегородками и корпусом и через зазоры около труб пучка .
Со стороны воды маслоохладители выполняются обычно также многоходовыми за счет изменения числа перегородок в крышках , что позволяет регулировать подогрев воды и ее расход без существенного снижения коэффициентов теплоотдачи со стороны воды .[8]
Для охлаждения масла , используемого в подшипниках , редукторных передачах и других элементах компрессорных машин , заводом « Энергомаш « выпускается серия аппаратов типа МА с поверхностью 2;3;5;6;8;16 и 35 м2 .
Все охладители имеют вертикальное исполнение и состоят из следующих основных узлов : верхней съемной крышки 1 , трубной системы 2 и корпуса 3 .
Вода движется внутри труб и камер , масло – в межтрубном пространстве .
Направление движения масла в этих аппаратах создается системой сегментных перегородок или перегородок типа диск-кольцо .[7,стр.32]
1. СИСТЕМА ОХЛАЖДЕНИЯ МАСЛА
В ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКЕ
На рис. 1 показана принципиальная схема системы маслоснабжения газоперекачивающего турбокомпрессорного агрегата НЗЛ типа ГТК – 10 , предназначенного для установки на перекачивающих станциях газопроводов .
Общая вместимость маслосистемы – 13 м3 . В данном агрегате маслобак совмещен с рамой газотурбокомпрессора . Заливка масла в него осуществляется по специальной линии через фильтр тонкой очистки 1 . Из нижней части ( картера ) бака 2 масло пусковым 4 или главным 6 масляным насосом через систему обратных клапанов 5 подается к охладителю 8 и далее через фильтр 3 по напорным линиям на смазывание и охлаждение подшипников турбины и компрессора . Из подшипников масло вновь сливается в нижнюю часть маслобака
2 .
Охлаждение масла в аппарате 8 осуществляется антифризом , не замерзающим при понижении температуры наружного воздуха до –40 0 С .
Охлаждение антифриза производится в параллельно включенных аппаратах 10 , имеющих систему воздушного охлаждения . Воздух через эти охладители продувается вентиляторами 11 , приводимыми от электродвигателей .
Циркуляция антифриза в системе осуществляется с помощью главного насоса 13
. Насос 14 является резервным . Бачок 12 служит демпфером . В баках 15 и 17 вместимостью по 10 м3 каждый содержатся соответственно антифриз и дистиллят . Насос 16 является вспомогательным и служит для заполнения системы охлаждения антифризом или дистиллятом . В летнее время рабочим телом в системе охлаждения служит дистиллят . В этом случае для обеспечения работоспособности схемы в зимних условиях в ней предусмотрен дополнительный подогреватель 9 .
Охлаждение масла в данном агрегате осуществляется , таким образом , по двухконтурной схеме : в аппарате 8 теплота от масла передается антифризу ( дистилляту ) , от которого она в свою очередь отводится воздухом в охладителях 10 . Применение этой двухконтурной схемы охлаждения масла в данном случае продиктовано двумя причинами : отсутствием в месте установки газотурбокомпрессоров необходимого количества охлаждающей воды ; необходимостью обеспечения ее надежной работы при температурах наружного воздуха ниже 0 0 С , так как с целью снижения стоимости сооружения газоперекачивающих станций часть их оборудования располагается на открытых площадках .[7,стр.14]
2. ТЕПЛОВОЙ РАСЧЕТ ТЕПЛООБМЕННИКА.
Принимаем схему вертикального маслоохладителя с прямыми трубками и перегородками типа диск-кольцо. Внутри трубок течет охлаждающая вода
(пресная), в межтрубном пространстве – трансформаторное масло, омывая трубки снаружи.
Средняя температура масла в маслоохладителе[9, стр.54]:
tм.ср.=0,5*(tм1+tм2), оС
(2.1) где tм1-температура масла на входе в маслоохладитель, оС; tм2-температура масла на выходе из маслоохладителя оС; tм.ср =0,5*(60+48)=54оС.
Физические свойства при tм.ср.= 54оС: [9, приложение 3]
Срmм=1,876 кДж/(кг оС)
(м=859,3кг/м3
(м=6,68*10-6 м2 /с
Prм=101
Количество тепла, которое необходимо отвести охлаждающей водой от масла[9, стр.54]:
Qм=(Gм*(м* Срmм*( tм1-tм2))/3600, кВт/с
(2.2)
где Gм - номинальный расход масла через аппарат, м3/ч;
(м – плотность масла при tм.ср.= 54оС, кг/м3 ;
Срmм –удельная теплоемкость масла при tм.ср.= 54оС, кг/м3 ;
Qм =(8,4*859,3*1,876*(60-48))/3600=44,3 кВт/с
Физические свойства воды при tв=18 оС: [9, приложение2]
Срmв=4,185 кДж/кг*оС
(в=998,5кг/м3
Температура охлаждающей воды при выходе из маслоохладителя:
Qм= Qв
Gм*(м* Срmм*( tм1-tм2)= Gв*(в* Срmв*( tв2-tв1) [9, стр.54]
(2.3) tв2=tв1+(Qв*3600/ (Срmв* Gв*(в)), оС где tв1-температура воды на входе в маслоохладитель, оС;
Qв – тепловой поток, воспринимаемый охлаждающей водой, кВт/с;
Gв -номинальный расход воды через аппарат, м3/ч; tв2=18+(44,3*3600/(4,185*22*998,5))=20 оС
Средняя температура воды[9, стр.54]: tв.ср.=0,5*( tв1+tв2), оС
(2.4) tв.ср.=0,5*(18+20)=19оС
Физические параметры воды при tв.ср.= 19 оС: [9, приложение 2]
(в=0,9394*10-6 м2 /с
Prв=6,5996
(в=0,604 Вт/(м*К)
(в=997,45 кг/м3
Среднелогарифмический температурный напор (для противоточной схемы) [7, стр. 104]:
(tср=((tм1-tв2)-(tм2-tв1))/(ln((tм1-tв2)/(tм2-tв1)))*((t, оС
(2.5)
((t –поправочный коэффициент, учитывающий особенности принятой схемы движения теплоносителей. Для противоточной схемы ((t=1; [7, стр. 104]
(tср =((60-20)-(48-18))/(ln((60-20)/(48-18)))=34 оС
Определение коэффициента теплопередачи:
Среднее значение коэффициента теплопередачи К (Вт/(м2.К) определяется по уравнению (4.29) [7,стр. 108] :
К=1/((1/(мпр)+(((dн/dвн(лат)+((dн/dвн(в)), Вт/(м2*К)
(2.6)
где (м пр-приведенный коэффициент теплоотдачи масла, Вт/(м2*К);
(в- коэффициент теплоотдачи воды, Вт/(м2*К); dн –наружный диаметр трубки,м; dвн-внутренний диаметр трубки,м;
( -толщина стенки трубки, м;
(лат.- коэффициент теплопроводности латуни, Вт/(м*К);
(- коэффициент оребрения ((=2,26)
Задаемся температурами стенок со стороны воды и со стороны масла: tст.в.=25 оС tст.м.=40 оС
Задаемся скоростями воды и масла: wв=1 м/с wм=0,5 м/с
Значение приведенного коэффициента теплоотдачи (м пр [Вт/(м2*К)] от масла в пучке трубок с поперечным или близким к нему характером омывания определяется соотношением [7,стр.109]:
(м пр=(м(о,
(2.7) где (м-среднее значение коэффициента теплоотдачи, Вт/(м2*К);
(о-поправочный коэффициент ((о=0,95-0,98)
Для вычисления (м воспользуемся формулой (4.31) [7,стр. 109]:
(м=0,354((м /()*Re0,6*Prм0,33*(Prм/Prw)0,18, Вт/( м2*К)
(2.8) где (м - коэффициент теплопроводности масла при tм.ср.= 54 оС,
Вт/(м*К);
Prf –число Прандтля для масла при tм.ср.= 54 оС;
Prw - число Прандтля для масла при tст.м.=40 оС;
(-расстояние между внешними образующими трубок,м;
Reм- критерий Рейнольдса для масла. Он определяется следующим образом:
Reм=(wм*(/(м)
(2.9) где wм –скорость масла, м/с;
(м –вязкость масла tм.ср.= 54оС, м2/с;
Reм=(0,5*0,003/6,68*10-6)=224
(м=0,354(0,107/0,003)*2240,5*101,720,33*(101,72/143,56)0,18=673,2 Вт/( м2*К)
(м пр=673,2*0,95=639,5 Вт/( м2*К)
Определяем режим движения воды в трубках. Критерий Рейнольдса для охлаждающей воды [9,стр.55]:
Reв=(wв*dвн/(в)
(2.10) где wв –скорость воды,м/с; dвн –внутренний диаметр трубки,м;
(в –коэффициент кинематической вязкости, м2 /с;
Reв=(1*0,011/(1,006*10-6))=11000
У нас турбулентный режим течения жидкости, т.к. Reв= 11000>5*103. При таком режиме среднее значение (в определяется по формуле[7,стр 114]:
(в=0,021*((в/ dвн)* Reв0,8* Prf0,43*( Prf/ Prw)0,25, Вт/( м2*К)
(2.11)
(в –коэффициент теплопроводности воды при tв.ср.= 19оС;
Prf –число Прандтля для воды при tв.ср.= 19 оС;
Prw - число Прандтля для воды при tст.в.=25 оС;
(в=0,021*(0,58/0,011)* 110000,8* 7,020,43*( 7,02/ 6,32)0,25=4460 Вт/( м2*К)
Плотность теплового потока внутри трубок qв[9,стр. 56]:
qв=(в*( tст.в.- tв.ср), Вт/м2
(2.12)
qв=4460 *( 25- 19)=13380 Вт/м2
к=1/((1/639,5)+(0,0015*2,26*0,014/104,5*0,011)+(2,26*0,014/4460*0,011))=
=420 Вт/( м2*К)
Поверхность охлаждения маслоохладителя расчитывается [9,стр. 56]:
F(=Q/(k*(Tср), м2
(2.13)
Q - количество охлаждаемого водой тепла, Вт;
(Tср - среднелогарифмический температурный напор, оС; k – коэффициент теплопередачи, Вт/( м2*К);
F(=44300/(420*34)=3,1 м2
Удельная плотность теплового потока[7,стр. 108]:
q=Q/F(, Вт/( м2*К)
(2.14) q=44300/3,1=14290 Вт/( м2*К);
С другой стороны это можно выразить следующим образом [9,стр.55]: q=(м*(tм=461*(tм
(2.15)
Следовательно: (tм=q/(м=14290/640=21,3 оС
Из рис.2.1 видно что tст.м.=tм.ср.- (tм=54-21,3=32,7 оС
Т.к. q=q1=q1=…=qn, то q=(в*(tв=4460*(tв
(tв=q/(в=14290/4460=3,2 оС tст.в.=tв.ср.+(tв=19+3,2=22,2 оС
По результатам расчета принимаем температуру стенки со стороны воды tст.в.= 22,2 оС и температуру стенки со стороны масла tст.м.=32,7 оС.
Рис.2.1 График изменения температур теплоносителей вдоль поверхности теплообмена при противотоке.
Теперь пересчитываем площадь поверхности охлаждения относительно найденных температур стенок:
Prв(при tст.в.= 22,2 оС)=6,32
(в=0,021*(0,58/0,011)* 110000,8* 7,020,43*( 7,02/6,78)0,25=4263,5 Вт/( м2*К) qв=4263,5 *( 22,2- 19)=13643 Вт/м2
Prм(при tст.м.= 32,7оС)=132,8
(м=0,354(0,107/0,003)*2240,5*101,720,33*(101,72/132,8)0,18=695,3 Вт/( м2*К)
(м пр=695,3*0,95=660,5 Вт/( м2*К) q=660,5*(54-32,7)=14069,4 Вт/м2
к=1/((1/660,5)+(0,0015*2,26*0,014/104,5*0,011)+(2,26*0,014/4263,5*0,011))=
=412 Вт/( м2*К)
F(=44300/412*34=3,16 м2
Поверхность охлаждения с учетом загрязнения[9,стр.56]:
F=1,1*F(, м2
(2.16)
F=1,1*3,16=3,47 м2
Далее проводим аналогичный расчет для разных скоростей воды и масла, для того, чтобы выбрать оптимальную площадь поверхности охлаждения и оптимальные скорости воды и масла. Варианты расчетных скоростей и результаты вычислений приведены в табл. 2.1.
Таблица 2.1
Зависимость поверхности охлаждения маслоохлодителя от скоростей воды и масла .
wв, м/с 0,7 1 1,3 1,5
wм, м/с 0,3 0,5 0,7 0,9
Reв 29806 14903 19374 22354
(в, Вт/( м2*К)7833 4493,3 5549,7 6222,7
qв, Вт/ м2 18799,5 10784 13319,2 14934,4
Reм 11,8 19,7 27,6 35,5
(м, Вт/( м2*К)321,5 412 492 557,8
qм, Вт/ м2 7779,4 9969,8 11904 13498
к, Вт/( м2*К) 308,6 384,6 456,6 507,6
F(, м2 9,24 7,4 6,3 5,6
F, м2 8,4 6,7 5,7 5,1
Выбираем вариант с площадью поверхности охлаждения F=3,47м2 и скоростями воды и масла wв=1 м/с и wм=0,5м/с.
3. КОНСТРУКТИВНЫЙ РАСЧЕТ.
3.1 Определение количества трубок и способа их размещения.
Конструктивный расчет кожухотрубных теплообменников состоит в определении количества трубок и способа их размещения, нахождении внутреннего диаметра корпуса и числа ходов в трубном и межтрубном пространстве.
В основу расчета положены исходные и результаты теплового расчета, приведенные выше.
Общая длина трубы в расчете на одноходовой пучок, м[6,стр.26]:
L=900*F(*dвн*wв*(в/Gв
(3.1.1)
F(- поверхность теплообмена, м2; dвн – внутренний диаметр трубы,м; wв – скорость теплоносителя (в нашем случае это скорость воды, т.к. она течет внутри трубок), м/с;
(в – плотность воды, кг/ м3;
Gв – часовой расход воды, кг/ч;
L=900*3,16*0,014*1*997,45/10008=9,3м
Рабочая длина трубы в одном ходу,м:
L’=L/Zв, м
L – общая длина трубы,м;
Zв – число ходов по воде;
(3.1.2) [6,стр26]
Определяем число ходов по воде. Для этого рассчитаем несколько вариантов и выберем оптимальный.
Zв=2 L’=9,3/2=4,65 м
Zв=4 L’=9,3/4=2,325 м
Zв=6 L’=9,3/6=1,55 м
Выбираем Zв=4 и L’=2,325 м.
Число трубок одного хода в трубном пространстве, шт.:
No=(4*Gв)/(3600*(*dвн2*(в*wв )
(3.1.3) [6,стр27]
Gв – массовый расход воды в трубном пространстве, кг/ч; dвн – внутренний диаметр трубок, м;
(в – плотность воды, кг/м3; wв – скорость воды,м/с;
No=(4*10008)/(3600*3,14* (0,014)2*997,45*1)=18 шт
Общее количество трубок, шт;
N=No*Zв,шт
(3.1.4) [6,стр27]
No - число труб одного хода в трубном пространстве, шт;
Zв – число ходов воды в трубном пространстве;
N=18*4=72
Шаг труб в пучке t (расстояние между центрами трубок) принимают из условий прочности:
t=(...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 1698

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434