Главная / Рефераты / Рефераты по теплотехнике
Реферат: Расчет радиаторов
Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ РОССИИ АРХАНГЕЛЬСКИЙ ЛЕСОТЕХНИЧЕСКИЙ ИНСТИТУТ К а ф е д р а т е п л о т е х н и к и РАЗРАБОТКА ПРОГРАММЫ ДЛЯ РЕШЕНИЯ НЕОДНОМЕРНЫХ СТАЦИОНАРНЫХ ЗАДАЧ ТЕПЛОПРОВОДНОСТИ ЧИСЛЕННЫМ МЕТОДОМ С ИСПОЛЬЗОВАНИЕМ КОНСЕРВАТИВНО-РАЗНОСТНОЙ СХЕМЫ А Р Х А Н Г Е Л Ь С К 1 9 9 3 … О Г Л А В Л Е Н И Е Введение …... 1.Основные положения методики построения консервативно- разностной схемы при решении неодномерных задач стационарной теплопроводности ...…... 2. Методика подготовки и решения задачи на ЭВМ ... 2.1. Постановка задачи, разработка математической модели ...…. 2.2. Выбор метода численного решения ...….. 2.3. Разработка алгоритма и структуры .….. 2.4. Написание программы и подготовка ее к вводу в ЭВМ 2.5. Тестирование, отладка программы и решение на ЭВМ Литература ...… В В Е Д Е Н И Е Базовый уровень подготовки инженера-энергетика в области информатики и вычислительной техники определяется необходимым набором знаний, умений и навыков в применении ЭВМ для решения различных технических задач. Специалисты этой категории, помимо умения использовать прикладное программное обеспечение, должны быть программирующими пользователями, т.к. их профессиональная деятельность связана с выполнением большого количества теплотехнических расчетов. Для соблюдения принципа фундаментальности высшего образования работа построена на базе рассмотрения вопросов применения ЭВМ для решения основных задач теории теплообмена. К одной из таких задач относится задача, связанная с определением температурного поля не одномерных тел численными методами. Рассмотрим методику подготовки и решения указанной задачи на персональном компьютере.
1. О С Н О В Н Ы Е П О Л О Ж Е Н И Я М Е Т О Д И К И П О С Т Р О Е Н И Я К О Н С Е Р В А Т И В Н О-Р А З Н О С Т Н О Й С Х Е М Ы ПРИ Р Е Ш Е Н И И Н Е О Д Н О М Е Р Н Ы Х З А Д А Ч С Т А Ц И О Н А Р Н О Й Т Е П Л О П Р О В О Д Н О С Т И Определение температурного поля в любой момент времени является основной задачей теории теплопроводности. Для изотропного тела {с постоянным по различным направлениям коэффициентом теплопроводности (} она может быть описана дифференциальным уравнением теплопроводности ? T + Qv/( = 1/a*( dT/d(()), (1) где Т - температура; а - коэффициент температуропроводности, а=(/((*c); ( - плотность материала, с - удельная теплоемкость при постоянном давлении, ? -обозначение оператора Лапласа {?= d /dx + d /dy + d /dz - в декартовых координатах x, y, z }; ( - время, Qv - объемная плотность теплового потока. Уравнение теплопроводности является математическим выражением закона сохранения энергии в твердом теле. При решении задачи к дифференциальному уравнению теплопроводности необходимо добавить краевые условия. В описание краевых условий входят: поле температур для какого-нибудь предшествующего момента времени {начальные условия}, геометрия тела {геометрические условия}, теплофизические характеристики тела {физические условия} и закон теплообмена между поверхностью тела и окружающей средой {граничные условия}. Если процесс теплопроводности не только стационарный {dT/d(tay)=0}, но и происходит без тепловыделения внутри материала (Qv = 0), то уравнение принимает вид ?(Т) = 0 . (2) Ввиду сложности и трудоемкости решения неодномерных задач теплопроводности аналитическими методами в инженерной практике наиболее часто используют приближенные. Один из них – метод конечных разностей, непосредственно базирующийся на дифференциальном уравнении теплопроводности и граничных условиях, представляет наибольший интерес. В настоящее время значительное распространение получили конечно- разностные методы, построенные с использованием известных законов сохранения. В этом случае разностные схемы получили название консервативные. Такой подход к построению схемы, сохраняющий физическую сущность задачи, предпочтительнее чисто аналитического подхода, заключающегося в непосредственной записи дифференциальных уравнений конечно-разностными аналогами. Следует заметить, что теория конечно-разностных численных методов является самостоятельным разделом вычислительной математики и широко представлена в специальной литературе[1,2,]. С основными методами построения конечно-разностных схем, алгоритмами расчета, программным обеспечением применительно к задачам теплообмена можно ознакомиться в учебной литературе [3,4,5]. При изложении указанного метода особое внимание уделено физическому смыслу построения консервативной разностной схемы и ее реализации на ПЭВМ в задачах теплопроводности. При использовании численного метода с консервативной разностной схемой твердое тело разбивают на элементарные объемы. Предполагается, что масса такого элементарного объема сосредотачивается в его центре, называемом узлом. Для каждого узла на основе закона сохранения энергии составляется уравнение теплового баланса, которое включает значения всех тепловых потоков на границах объемов (ячеек). Если ячейка прилегает к поверхности тела, то выражения для определения тепловых потоков должны описывать теплообмен между телом и окружающей средой, то есть учитывать граничные условия. После выполнения преобразований с уравнениями теплового баланса получают алгебраические уравнения для температуры в каждом узле. Поскольку число узлов и число ячеек совпадают, то образованная система алгебраических уравнений является конечно- разностным аналогом дифференциального уравнения теплопроводности и заменяет его с соответствующими граничными условиями. Такой подход к составлению конечно-разностного аналога, увязанного с тепловым балансом, позволяет получать правдоподобные решения даже при грубом выборе расстояния между узлами (размера ячейки сетки). Рассмотрим некоторые конкретные примеры составления конечно- разностных схем для узлов двумерной задачи теплопроводности. В этом случае уравнение (2) принимает вид dT/dx + dT/dy = 0 . (3) Внутренняя область типичного двумерного тела показана на рис.1. Рис.1. Расположение узла внутри двумерного тела толщиной б. Каждый элементарный прямоугольник (ячейка сетки) имеет длину -х и высоту -у в направлениях осей х и у. Внутренний узел, обозначенный символом 0, окружен четырьмя соседними узлами: 1,2,3,4. Кондуктивный перенос теплоты, который в действительности происходит в твердом теле через поверхности y*б и x*б (б -толщина тела) будем считать как перенос теплоты от соответствующих узлов к цент...
ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!
Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь на сайте:
|
|
|
Добавлено: 2010.10.21
Просмотров: 2464
|
Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21
При использовании материалов сайта, активная ссылка на AREA7.RU обязательная! |