Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Расчет радиаторов - Рефераты по теплотехнике - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по теплотехнике

Реферат: Расчет радиаторов



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ РОССИИ
АРХАНГЕЛЬСКИЙ ЛЕСОТЕХНИЧЕСКИЙ ИНСТИТУТ
К а ф е д р а т е п л о т е х н и к и
РАЗРАБОТКА ПРОГРАММЫ
ДЛЯ РЕШЕНИЯ НЕОДНОМЕРНЫХ СТАЦИОНАРНЫХ ЗАДАЧ
ТЕПЛОПРОВОДНОСТИ ЧИСЛЕННЫМ МЕТОДОМ С
ИСПОЛЬЗОВАНИЕМ КОНСЕРВАТИВНО-РАЗНОСТНОЙ СХЕМЫ
А Р Х А Н Г Е Л Ь С К
1 9 9 3

О Г Л А В Л Е Н И Е
Введение …...
1.Основные положения методики построения консервативно- разностной схемы при решении неодномерных задач стационарной теплопроводности ...…...
2. Методика подготовки и решения задачи на ЭВМ ...
2.1. Постановка задачи, разработка математической модели ...….
2.2. Выбор метода численного решения ...…..
2.3. Разработка алгоритма и структуры .…..
2.4. Написание программы и подготовка ее к вводу в ЭВМ
2.5. Тестирование, отладка программы и решение на ЭВМ
Литература ...…
В В Е Д Е Н И Е
Базовый уровень подготовки инженера-энергетика в области информатики и вычислительной техники определяется необходимым набором знаний, умений и навыков в применении ЭВМ для решения различных технических задач.
Специалисты этой категории, помимо умения использовать прикладное программное обеспечение, должны быть программирующими пользователями, т.к. их профессиональная деятельность связана с выполнением большого количества теплотехнических расчетов.
Для соблюдения принципа фундаментальности высшего образования работа построена на базе рассмотрения вопросов применения ЭВМ для решения основных задач теории теплообмена. К одной из таких задач относится задача, связанная с определением температурного поля не одномерных тел численными методами.
Рассмотрим методику подготовки и решения указанной задачи на персональном компьютере.

1. О С Н О В Н Ы Е П О Л О Ж Е Н И Я М Е Т О Д И К И
П О С Т Р О Е Н И Я К О Н С Е Р В А Т И В Н О-Р А З Н О С Т Н О Й С Х Е
М Ы ПРИ Р Е Ш Е Н И И Н Е О Д Н О М Е Р Н Ы Х З А Д А Ч С Т А Ц И О Н
А Р Н О Й Т Е П Л О П Р О В О Д Н О С Т И
Определение температурного поля в любой момент времени является основной задачей теории теплопроводности. Для изотропного тела {с постоянным по различным направлениям коэффициентом теплопроводности (} она может быть описана дифференциальным уравнением теплопроводности
? T + Qv/( = 1/a*( dT/d(()),
(1)
где Т - температура; а - коэффициент температуропроводности, а=(/((*c);
( - плотность материала, с - удельная теплоемкость при постоянном давлении, ? -обозначение оператора Лапласа {?= d /dx + d /dy + d /dz - в декартовых координатах x, y, z }; ( - время, Qv - объемная плотность теплового потока.
Уравнение теплопроводности является математическим выражением закона сохранения энергии в твердом теле.
При решении задачи к дифференциальному уравнению теплопроводности необходимо добавить краевые условия. В описание краевых условий входят: поле температур для какого-нибудь предшествующего момента времени
{начальные условия}, геометрия тела {геометрические условия}, теплофизические характеристики тела {физические условия} и закон теплообмена между поверхностью тела и окружающей средой {граничные условия}.
Если процесс теплопроводности не только стационарный
{dT/d(tay)=0}, но и происходит без тепловыделения внутри материала (Qv =
0), то уравнение принимает вид
?(Т) = 0 .
(2)
Ввиду сложности и трудоемкости решения неодномерных задач теплопроводности аналитическими методами в инженерной практике наиболее часто используют приближенные. Один из них – метод конечных разностей, непосредственно базирующийся на дифференциальном уравнении теплопроводности и граничных условиях, представляет наибольший интерес.
В настоящее время значительное распространение получили конечно- разностные методы, построенные с использованием известных законов сохранения. В этом случае разностные схемы получили название консервативные. Такой подход к построению схемы, сохраняющий физическую сущность задачи, предпочтительнее чисто аналитического подхода, заключающегося в непосредственной записи дифференциальных уравнений конечно-разностными аналогами.
Следует заметить, что теория конечно-разностных численных методов является самостоятельным разделом вычислительной математики и широко представлена в специальной литературе[1,2,]. С основными методами построения конечно-разностных схем, алгоритмами расчета, программным обеспечением применительно к задачам теплообмена можно ознакомиться в учебной литературе [3,4,5].
При изложении указанного метода особое внимание уделено физическому смыслу построения консервативной разностной схемы и ее реализации на
ПЭВМ в задачах теплопроводности.
При использовании численного метода с консервативной разностной схемой твердое тело разбивают на элементарные объемы. Предполагается, что масса такого элементарного объема сосредотачивается в его центре, называемом узлом. Для каждого узла на основе закона сохранения энергии составляется уравнение теплового баланса, которое включает значения всех тепловых потоков на границах объемов (ячеек). Если ячейка прилегает к поверхности тела, то выражения для определения тепловых потоков должны описывать теплообмен между телом и окружающей средой, то есть учитывать граничные условия. После выполнения преобразований с уравнениями теплового баланса получают алгебраические уравнения для температуры в каждом узле. Поскольку число узлов и число ячеек совпадают, то образованная система алгебраических уравнений является конечно- разностным аналогом дифференциального уравнения теплопроводности и заменяет его с соответствующими граничными условиями. Такой подход к составлению конечно-разностного аналога, увязанного с тепловым балансом, позволяет получать правдоподобные решения даже при грубом выборе расстояния между узлами (размера ячейки сетки).
Рассмотрим некоторые конкретные примеры составления конечно- разностных схем для узлов двумерной задачи теплопроводности. В этом случае уравнение (2) принимает вид dT/dx + dT/dy = 0 .
(3)
Внутренняя область типичного двумерного тела показана на рис.1.
Рис.1. Расположение узла внутри двумерного тела толщиной б.
Каждый элементарный прямоугольник (ячейка сетки) имеет длину -х и высоту -у в направлениях осей х и у. Внутренний узел, обозначенный символом 0, окружен четырьмя соседними узлами: 1,2,3,4. Кондуктивный перенос теплоты, который в действительности происходит в твердом теле через поверхности y*б и x*б (б -толщина тела) будем считать как перенос теплоты от соответствующих узлов к цент...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 2133

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!
Интернет-магазин низких цен proteplo-spb.ru. Чугунные радиаторы отопления купить.

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434