Notice: Undefined variable: title in /home/area7ru/area7.ru/docs/referat.php on line 164
Реферат: Разработка системы синхронизации положения траверсы гидравлического пресса усилием 75000тс - Рефераты по цифровым устройствам - скачать рефераты, доклады, курсовые, дипломные работы, бесплатные электронные книги, энциклопедии

Notice: Undefined variable: reklama2 in /home/area7ru/area7.ru/docs/referat.php on line 312

Главная / Рефераты / Рефераты по цифровым устройствам

Реферат: Разработка системы синхронизации положения траверсы гидравлического пресса усилием 75000тс



Notice: Undefined variable: ref_img in /home/area7ru/area7.ru/docs/referat.php on line 323
1 АНАЛИЗ ОБЪЕКТА ПРОЕКТИРОВАНИЯ
В данной курсовой работе разработана система синхронизации положения траверсы гидравлического пресса усилием 75000тс. Необходимость разработки такой системы объясняется тем, что в процессе штамповки из-за эксцентричного нагружения пресса происходит перекос траверсы относительно нижнего штампа с заготовкой. Из-за перекосов траверсы появляется клиновидность получаемых заготовок, т.е. ухудшаются их качественные параметры, требуется дополнительная обработка в механическом цехе, что ведет к повышению затрат на производство продукции. Причины возникновения эксцентриситета нагрузки: несимметричность форм штампуемых изделий, неравномерный нагрев заготовки, неравномерное остывание из-за специфики формы изделия. Т.к. данные причины являются неустранимыми, то поддержание параллельности траверсы относительно стола необходимо осуществлять с помощью системы синхронизации.
Модернизация системы синхронизации позволит получать штампованные заготовки высокой точности, снизится объем работ по дальнейшей обработке деталей, снизится время обработки заготовок, повысится производительность, а следовательно себестоимость получаемых изделий будет ниже. Т.о. экономический эффект от использования системы синхронизации траверсы пресса очевиден.
Имеющаяся система синхронизации на прессе основана на применении синхронизирующих цилиндров, расположенных в нижней части траверсы. Работа основана на принципе гидравлического слежения. При появлении перекоса поперечины пресса, возросшее давление в одном синхронизирующем цилиндре повышает давление в другом до выравнивания траверсы. Но в процессе эксплуатации такой системы выявили ее малую надежность и точность. В современных условиях требования к точности получаемых заготовок возросли, поэтому появилась необходимость в разработке новой системы синхронизации положения траверсы.
Рисунок 1.1 – Схема системы ограничения перекоса подвижной поперечины пресса 750 МН
Для разработки системы синхронизации положения траверсы приведем необходимые технические характеристики гидравлического пресса.
Пресс имеет двенадцать рабочих цилиндров с диаметром поршня 1520 мм.
Номинальное усилие – 750 МН, достигается за счет давления всех 12 цилиндров и собственного веса траверсы 5000т (50 МН).
За счет различной подачи рабочей жидкости в группы цилиндров возможен набор усилия от 50 до 750 МН.
Пресс имеет привод от двухсекционной насосно-аккумуляторной станции
(давления 20 и 32 МПа).
Ход траверсы – 2000 мм.
Диапазон скоростей траверсы при рабочем ходе: 0,2 – 30 мм/с.
Обратный ход поперечины осуществляется специальными возвратными цилиндрами.
Система синхронизации действует по принципу изменения усилия в рабочих цилиндрах при перекосе траверсы посредством регулирования количества поступающей в них жидкости. Данное регулирование можно осуществлять различными способами. Разработка новой системы синхронизации предполагает отказаться от синхронизирующих цилиндров, а использовать в качестве последних четыре крайних рабочих. Эта возможность обусловлена тем, что в крайних рабочих цилиндрах при любой ступени усилия пресса рабочее давление
32 МПа. При этом в момент появления перекоса необходимо уменьшить подачу жидкости в крайнем гидроцилиндре и возобновит ее при исчезновении перекоса.
Достоинства такого поддержания траверсы в бесперекосном горизонтальном положении во время рабочего хода при эксцентричном нагружении пресса в том, что освобождается рабочее пространство в нижней части траверсы, возможно более точное поддержание необходимого давления штамповки.
Регулировать расход в рабочих (синхронизирующих) цилиндрах можно с помощью напорного клапана, который включает в свой состав гидроцилиндр, перемещение поршня которого регулирует расход жидкости через клапан в рабочий гидроцилиндр. Т.о. стоит задача проектирования системы управления перемещением поршня цилиндра напорного клапана в зависимости от величины перекоса поперечины пресса.
Структурная схема системы синхронизации траверсы представлена на рисунке 1.2.
Рисунок 1.2 – Структурная схема синхронизации траверсы пресса
Регулируемым объектом является траверса пресса. В качестве чувствительного элемента используем датчик положения. В качестве усилительно- преобразующего устройства применим дросселирующий распределитель. Регулирующий орган – гидроцилиндр напорного клапана.
Важный элемент алгоритма работы системы синхронизации – определение зависимости величины расхода жидкости в рабочем цилиндре от положения траверсы. Для этого необходимо ввести в схему контроллер, который будет обрабатывать информацию с датчиков положения и выдавать сигналы на установку положения золотников в соответствующих дросселирующих распределителях. В результате управляемые клапаны будут открываться и закрываться на необходимую величину, подавая в синхронизирующие гидроцилиндры определенную подачу рабочей жидкости.
Расход жидкости в каждом синхронизирующем цилиндре управляется отдельно, по два цилиндра на одну насосную установку. Это решение обусловлено конструктивными особенностями гидравлического пресса. Насосные установки располагаются в верхней части пресса, непосредственно вблизи напорных клапанов, регулирующих расход в синхронизирующих цилиндрах. Таким образом предотвращаются потери давления по длине трубопровода и в местных гидравлических сопротивлениях. Два крайних цилиндра слева управляются от одной насосной установки, два крайних цилиндра справа – от другой. При этом повышается надежность эксплуатации системы синхронизации, т.к. при аварийных ситуациях, таких как отказ в работе приводного электродвигателя, имеется возможность с помощью второй насосной установки вернуть гидроцилиндры в исходное положение. Т.о. отказ в работе системы ограничения перекоса не окажет существенного влияния на функционирования всей системы.
Для повышения надежности работы системы синхронизации необходимо предусмотреть возможные аварийные ситуации. В основном это повышение давления при выходе из строя гидроаппаратуры. При этом необходимо сигнализировать о повышении давления в соответствующих точках схемы и при необходимости отключить приводной электродвигатель для предотвращения аварийных ситуаций.
Первоочередной задачей при разработке системы синхронизации положения траверсы пресса является расчет управляемого впускного клапана, т.к. данный гидроаппарат не является типовым и не имеет справочных данных. После расчета впускного клапана необходимо для него спроектировать систему управления, рассчитать и выбрать гидроаппаратуру. Для контроля положения траверсы выбрать датчики положения и спроектировать схему сопряжения этих датчиков с выбранным микроконтроллером. В алгоритме работы необходимо учесть сигналы с датчиков аварийных ситуаций.
Построение динамической модели системы синхронизации позволит получить ее переходной процесс и оценить объект управления на устойчивость и быстродействие.
Функциональная схема системы синхронизации приведена на рисунке 1.3.
Схема разработана в пакете AUTOCAD2000.
Рисунок 1.3 – Функциональная схема системы синхронизации положения траверсы пресса
2 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ СИНХРОНИЗАЦИИ
2.1 РАСЧЕТ ВПУСКНОГО УПРАВЛЯЕМОГО КЛАПАНА
Принципиальная схема клапана представлена на рисунке 2.1.
Рисунок 2.1 – Впускной управляемый клапан гидравлического пресса
1-5 – клапан; 6 – втулка; 7 – отверстия; 8 – уплотнения; 9 – крышка; 10 – пружина; 11 – указатель.
Проходное сечение клапана:
где Fпл – площадь поршня цилиндра, обслуживаемого данным клапаном;
(пл – скорость поршня;
(к – скорость движения жидкости через клапан.
При давлениях жидкости р=20-32Мпа (к для клапанов выбирают до 20-30 м/c.

Тогда диаметр условного прохода и диаметр клапана:

Исходя из полученного диаметра основного клапана принимаем диаметр разгрузочного клапана d1=22м, а диаметр штока клапана соответственно d2=12 мм.
Для клапана усилие для подъема штока определяется по формуле:
где d1 – диаметр разгрузочного клапана; d2 – диаметр штока клапана;
Т – сила трения в манжетах;
П – усилие пружины.
Пренебрегая силами трения и усилием пружины найдем необходимое усилие:

Обычная величина подъема разгрузочного клапана 4мм.
2.2 ВЫБОР ИСПОЛНИТЕЛЬНОГО ГИДРОЦИЛИНДРА
Для регулирования потоком жидкости в синхронизирующих цилиндрах гидравлического пресса применен напорный клапан, для его подъема используем гидроцилиндр исходя из следующих условий:
где и - соответственно паспортное и заданное значения толкающего номинального усилия на штоке;
и - соответственно паспортное и заданное значения максимального хода штока гидроцилиндра;
и -соответственно паспортное и заданное максимальные значения скорости движения штока.
Выбираем гидроцилиндр с односторонним расположением штока ЦРГ25Х12, имеющий техническую характеристику:
D=25 мм; d=10 мм; =6 мм; =7400 Н; =1,5 ; =0,95; m=1,88 кг при номинальном давлении .
=7400 Н>=2512Н;
=1,5 >=0,1 ;
=6 мм>=4 мм.
Для выбранного типоразмера гидроцилиндра определяем расчётные значения необходимого перепада давления и объёмного расхода жидкости на входе в гидроцилиндр и - на выходе.
Эффективные площади поршня:
;
.
Необходимый перепад давления:
.
Т.к. закрытие и открытие клапана должно проходить в минимальное короткое время, то учитывая минимальное время срабатывания дросселирующего распределителя 0,04с необходимая заданная скорость
(з=4/0,04=0,1м/с.
Расход жидкости:
;
. где - необходимый перепад давления, ;
- давление в нагнетательной полости гидроцилиндра, ;
- давление в сливной полости гидроцилиндра, (при выборе гидроцилиндра предполагается, что );
- диаметр поршня гидроцилиндра, м;
- диаметр штока гидроцилиндра, м;
- механический КПД гидроцилиндра;
и - соответственно объёмные расходы жидкости на входе (в нагнетательном трубопроводе) и на выходе (в сливном трубопроводе) гидроцилиндра,.
2.3 ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ТРУБОПРОВОДОВ
Гидравлический расчёт трубопроводов заключается в выборе оптимального внутреннего диаметра трубы и в определении потерь давления по длине трубопровода.
Расчётное значение внутреннего диаметра трубы
где Q- расчётный объёмный расход жидкости в трубопроводе,
[(]- допускаемая скорость движения жидкости,
- диаметр трубы, м.
Допускаемая скорость движения жидкости в нагнетательном трубопроводе гидропривода выбирается по нормативным данным, в зависимости от расчётного перепада давления р на исполнительном органе привода ([(]=3м/c).
.
Из справочной литературы [1] выбираем внутренний диаметр бесшовной холоднодеформируемой трубы так, чтобы действительный внутренний диаметр трубы был равен расчётному значению или больше него, т.е.

Принимаем бесшовные холоднодеформируемые трубы на нагнетательном и сливном трубопроводе: труба имеющая наружный диаметр 16 мм, толщину стенки 2 мм и внутренний диаметр мм.
Определяем действительную скорость движения жидкости в нагнетательном и сливном трубопроводах:

где Q- объёмный расход жидкости в трубопроводе,
Потеря давления при движении жидкости по нагнетательному трубопроводу
(участок АБ) и сливному трубопроводу (участок ВГ) определяется:

, где - потеря давления, - коэффициент сопротивления;
- плотность рабочей жидкости, ; - длина участка трубопровода, - внутренний диаметр выбранной трубы,
- действительная скорость движения жидкости по участку трубопровода,
Коэффициент сопротивления
;
, где - число Рейнольдса.
Число (критерий) Рейнольдса
;
где - кинематический коэффициент вязкости рабочей жидкости (масло
И-20А), .
2.4 ВЫБОР ГИДРОАППАРАТУРЫ И ОПРЕДЕЛЕНИЕ ПОТЕРЬ ДАВЛЕНИЯ
Гидравлическая аппаратура выбирается из справочника при соблюдении следующих условий:
где и - соответственно номинальное паспортное давление гидроаппарата и расчетный перепад давления на исполнительном органе привода;
и - соответственно номинальный паспортный объемный расход гидроаппарата и расчетный максимальный расход на входе в исполнительный орган привода.
Для выбранного типоразмера гидроаппарата определяется действительная потеря давления при прохождении расчетного расхода через гидроаппарат:
где - паспортное значение потери давления при проходе через гидроаппарат номинального паспортного расхода;
- действительное значение расхода, проходящего через гидроаппарат.
1. Предохранительный клапан ПКПД10-20, имеющий техническую характеристику: номинальное давление - 20(106 >5,4(106; номинальный расход – 6,7(10-4>0,98(10-4; потеря давления – 0,25(106; объемный расход утечек – 2(10-6; диаметр условного прохода – 0,01м; масса – 4,5кг.
Потеря давления жидкости при прохождении каналов предохранительного клапана:
.
2. Дросселирующий распределитель с пропориональным электрическим управлением РП6, имеющий техническую характеристику: номинальное давление – (; номинальный расход – >0,49(10-4; потеря давления – 1,2 (106; объемный расход утечек – 2,5(10-6; минимальное время срабатывания – 0,04с; диаметр условного прохода – 6(10-3м; диаметр золотника – 9(10-3м; максимальное смещение золотника – 1(10-3м; диаметр сопла – 0,4(10-3м; максимальное смещение заслонки – 0,4(10-3м; масса – 0,5кг.
Потеря давления жидкости при прохождении каналов гидрораспределителя:
.
3. Двухсторонний гидравлический замок ГМ3 6/3, имеющий техническую характеристику: номинальное давление – (; номинальный расход – >0,49(10-4; потеря давления – 0,3(106; объемный расход утечек – 0,6(10-6; диаметр условного прохода – 0,006м; масса – 0,8кг.
Потеря давления жидкости при прохождении каналов гидравлического замка:
.
4. Фильтры, имеющие технические характеристики: приемный фильтр ФВСМ32: номинальный расход – 6,7(10-4>0,98(10-4; потеря давления – 0,007(106; диаметр условного прохода – 0,032м; точность фильтрации – 80мкм; масса – 4кг. напорный фильтр 1ФГМ32: номинальное давление - 32(106>9,12(106; номинальный расход – 5,3(10-4>0,98(10-4; потеря давления – 0,08(106; диаметр условного прохода – 0,022м; точность фильтрации – 10мкм; масса – 5кг. сливной фильтр ФС25: номинальное давление – 0,63(106; номинальный расход – 4,2(10-4; потеря давления – 0,1(106; диаметр условного прохода – 0,02м; точность фильтрации – 25мкм; масса – 1,9кг.
Потеря давления жидкости:
;
.
5. Реле давления ВГ62-11, имеющие технические характеристики: контролируемое давление – 1..20МПа; объемные расход утечек 0,8(10-6; масса – 2,3кг.
Суммарные потери давления при прохождении жидкости как в нагнетательном, так и в сливном трубопроводах состоят из потерь давления по длине трубопровода и в гидроаппаратуре , установленной в рассматриваемых трубопроводах.
Так как участки сопротивления соединяются последовательно, то суммарные потери в нагнетательной или сливной линиях гидросистемы определяются алгебраическим суммированием всех потерь давления в элементах трубопровода.
Суммарные потери давления в нагнетательном трубопроводе
(0,002+0,0053+2(0,065+2(0,003+0,003)(106=
=0,143(106.
Суммарные потери давления в сливном трубопроводе
(0,0016+2(0,065+2(0,003+0,004)(106=0,142(106.
2.5 ВЫБОР ИСТОЧНИКА ПИТАНИЯ
Выбрать из справочника источник питания гидросистемы с необходимыми параметрами можно только после определения расчетных значений необходимых давления и расхода на выходе из насосной установки.
Т.к. в качестве исполнительного органа используется гидроцилиндр с односторонним расположением штоков, то расчетное давление на выходе из насосной установки определяется :
0,143(106+2(5,4(106+0,142(106=11,1(106.
Расчетный расход на выходе из насосной установки:
, где - расчетное значение расхода на входе в исполнительный орган;
- суммарный расход утечек жидкости через капиллярные щели кинематических пар гидроаппаратов, установленных в нагнетательной линии ( внутренние утечки аппаратов );
- расход, затраченный на функционирование регуляторов потока.
=2(0,49(10-4+2(10-6+3(0,8(10-6+2(0,6(10-6+2(2,5(10-6=
=1,09(10-4.
В качестве источника питания выбираем пластинчатый насос с нерегулируемым рабочим объемом при соблюдении следующих условий:
;
, где и - соответственно паспортные номинальные значения давления и производительности ( подачи ) насоса на выходе.
Выбираем пластинчатый насос с нерегулируемым рабочим
БГ 12-21М, имеющий техническую характеристику:
- номинальное давление – ;
- номинальная производительность –;
- рабочий объем - ;
- частота вращения ротора – 25 об/с;
- объемный КПД – 0,75;
- механический КПД – 0,8;
- общий КПД – 0,6;
- масса – 9,5 кг.
2.6 РАСЧЁТ НАГНЕТАТЕЛЬНОГО ТРУБОПРОВОДА НА ПРОЧНОСТЬ
Прочностной расчет трубопровода заключается в определении толщины стенки трубы из условий прочности. Труба рассматривается как тонкостенная оболочка, подверженная равномерно распределенному давлению . С достаточной для инженерной практики точностью минимально допустимая толщина стенки определяется:
, где - толщина стенки трубы, м;
- расчетное давление на выходе из насосной установки,;
- внутренний паспортный диаметр трубы, м;
- допускаемое напряжение,.
Для труб, выполненных из стали 20, .
Из справочников толщина стенки трубы выбирается так, чтобы действительная толщина стенки трубы несколько превышала расчетное значение , т.е..

Выбираем трубу с параметрами:
мм, мм > 0,95 мм.
2.7 ВЫБОР ПРИВОДНОГО ЭЛЕКТРОДВИГАТЕЛЯ
В качестве приводного электродвигателя обычно используется трехфазный асинхронный электродвигатель с короткозамкнутым ротором общепромышленного применения. Электродвигатель выбираем при соблюдении следующих условий:
;
, где и - соответственно номинальные паспортное и расчетное значения активной мощности на валу ротора насоса;
и - соответственно номинальные паспортные значения частоты вращения роторов электродвигателя и насоса.
Расчетная номинальная мощность на валу ротора насоса при дроссельном регулировании скорости
, где - расчетная мощность на валу ротора насоса, кВт;
- расчетное значение номинального давления на выходном штуцере насоса ( точка А ), МПа;
- значение номинальной производительности ( подачи ) на выходном штуцере насоса ( точка А ), м3/с;
- общий КПД выбранного типоразмера насоса.
кВт.
Выбираем трехфазный асинхронный электродвигатель с короткозамкнутым ротором 4А132М4У3, имеющий следующую техническую характеристику: номинальная мощность - 4 кВт>2 кВт; синхронная частота вращения - 25 об/с25 об/с; масса – 100 кг.
3 РАЗРАБОТКА МИКРОКОНТРОЛЛЕРНОЙ СИСТЕМЫ УПРАВЛЕНИЯ
3.1 ВЫБОР МИКРОКОНТРОЛЛЕРА
Для обработки информации с датчиков положения, выполнения алгоритма работы и подачи управляющих сигналов на исполнительную гидравлическую аппаратуру применяем 28-выводный микроконтроллер PIC14000, тактовая частота которого без применения кварцевого резонатора 4МГц, объем ОЗУ 192 байта, 22 линии ввода-вывода, объем ПЗУ 4Кх14.
Данный микроконтроллер – дешевое микроэлектронное устройство, имеет достаточные технические характеристики для обслуживания разрабатываемой системы синхронизации.
Основные функции микроконтроллера в разрабатываемой системе – это опрос четырех датчиков положения, десяти датчиков давления, шести элементов фильтрации рабочей жидкости, проведение расчетов по алгоритму работы и выдача сигналов управления на предохранительные клапаны, дросселирующие распределители и приводные электродвигатели.
Функциональная схема микроконтроллерной системы управления представлена на рисунке 3.1.
Рисунок 3.1 – Функциональная схема микроконтроллерной системы управления
3.2 ВЫБОР ДАТЧИКА ПОЛОЖЕНИЯ И РАСЧЕТ СХЕМЫ СОПРЯЖЕНИЯ С
МИКРОКОНТРОЛЛЕРОМ
Для обеспечения измерения рабочего диапазона перемещения траверсы используем закрытую систему измерения линейных перемещений на базе фотоэлектрической линейки LS-623 со следующими техническими характеристиками:
- рабочий диапазон измерений – 2540мм;
- межштриховой шаг – 20мкм;
- системная точность 10мкм;
- разрез линейки (высота х толщина) 75х37мм.
Система имеет прямоугольные импульсы (ТТL-выход).
Выбранная система измерения линейных...

ВНИМАНИЕ!
Текст просматриваемого вами реферата (доклада, курсовой) урезан на треть (33%)!

Чтобы просматривать этот и другие рефераты полностью, авторизуйтесь  на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ
Простая ссылка на эту работу:
Ссылка для размещения на форуме:
HTML-гиперссылка:



Добавлено: 2010.10.21
Просмотров: 2781

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21

При использовании материалов сайта, активная ссылка на AREA7.RU обязательная!

Notice: Undefined variable: r_script in /home/area7ru/area7.ru/docs/referat.php on line 434