Главная / Методические материалы / Преподавание математики

Урок алгебры в 10-м классе. Тема: Примеры решения тригонометрических уравнений


Автор(ы): Фомина Валентина Витальевна, учитель математики

Цель урока:
  1. Закрепить навыки решения простейших тригонометрических уравнений.
  2. Сформировать понятие решения тригонометрических уравнений сводящихся к квадратным.
  3. Развивать умения сравнивать, выявлять закономерности, обобщать.
  4. Воспитывать ответственное отношение к труду.
Оборудование:
  1. Карточки для повторения формул решения простейших тригонометрических уравнений.
  2. Плакат с алгоритмом решения тригонометрических уравнений (большой на доску и каждому на стол).
Литература: Учебник Колмагорова “Алгебра и начала анализа, 10-11 класс”.
Ход урока.
I. Повторение
1. sin x = a, cos x = a, tg x = a
При каких значениях а эти уравнения имеют решения?
[sin x и cos x при /а/ 1 tg x при любом a]
2. Повторить формулы решения простейших тригонометрических уравнений (на карточках):
sin x = а х = (-1)к arc sin a+ к, к z
sin x = 0
sin x = 1
sin x = -1
cos x = a x=± arc cos a + 2 , n z
cos x = 0
cos x = 1
cos x = -1
tg x = a x = arc tg a + n, n z
arc sin (-а) = - arc sin а
arc cos (-а) = - arc cos а
arc tg а (-а) = - arc tg а
II. Проверка домашнего задания.
Игра “Поле чудес”. Правила игры несколько изменены, а название оставлено.
Правила игры.
  • Учитель берет понравившееся ему высказывание или слова из песни, стихотворения, пословицу. По количеству букв в этом высказывании подбирается столько же примеров или задач так, чтобы одинаковым буквам соответствовали одинаковые ответы.
  • Каждому ученику учитель дает карточку с заданиями и ученик сразу начинает решать.
  • На доске записаны буквы, которые встречаются в высказывании, и под ними ответы, которые соответствуют этим буквам.
  • Ниже записаны числа по порядку (по количеству букв в высказывании).
  • Ученик, выполнявший задание, называет номер своей карточки и букву, под которой записан ответ.
  • Учитель под числом (…) ставит букву (…). И так далее. Ученики стараются быстрее решить, чтобы получить следующую карточку.
  • За правильно решенные 2-3 задания он может получить оценку. Поэтому желательно карточек иметь более чем число.
Ум хорошо, а два лучше
12 3 45 67 8 9 10 11 12 13 14 15 1 6 17
а в д
n z , к z , n z
е л м
, n z , n z , n z
о р у
, n z , n z , n z
x ч ш
, n z , n z , n z
Уравнение:
, n z у
cos x = -1 х = +2 n, n z м
, n z x
, n z o
, n z p
, n z o
, n z ш
, n z o
, n z a
, n z д
, k z в
, n x a
, n z л
, n z у
, n z ч
, n z ш
, n z е
Дополнительные уравнения
, n z
, k z
, n z
, k z
, n z
, n z
, n z
, n z
, n z
, n z
, k z
, n z
, k z
, k z
, n z
, n z
III. Объяснение нового.
1.
  • В предыдущих параграфах были выведены формулы корней простейших тригонометрических уравнений: sin x=a, cos x=a, tg x=a
  • К этим уравнениям сводятся другие тригонометрические уравнения. Для решения большинства из них требуется применение формул преобразований тригонометрических выражений.
  • Сегодня на уроке мы рассмотрим уравнение, сводящиеся к квадратным.
2.
  • На доске записаны уравнения:
а) 3х-8=х+6 (линейное уравнение)
б) х2+2х-15=0 (квадратное уравнение)
в) х4-5х2+4=0 (квадратное уравне...

ВНИМАНИЕ!
Текст просматриваемого вами методического материала урезан на треть (33%)!

Чтобы просматривать этот и другие тексты полностью, авторизуйтесь на сайте:

Ваш id: Пароль:

РЕГИСТРАЦИЯ НА САЙТЕ

Простая ссылка на эту страницу:
Ссылка для размещения на форуме:
HTML-гиперссылка:

Добавлено: 2019.04.21 | Просмотров: 37

При использовании материалов сайта, активная ссылка на AREA7.RU обязательна!